Conformalized Unconditional Quantile Regression
- URL: http://arxiv.org/abs/2304.01426v1
- Date: Tue, 4 Apr 2023 00:20:26 GMT
- Title: Conformalized Unconditional Quantile Regression
- Authors: Ahmed M. Alaa, Zeshan Hussain and David Sontag
- Abstract summary: We develop a predictive inference procedure that combines conformal prediction with unconditional quantile regression.
We show that our procedure is adaptive to heteroscedasticity, provides transparent coverage guarantees that are relevant to the test instance at hand, and performs competitively with existing methods in terms of efficiency.
- Score: 27.528258690139793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a predictive inference procedure that combines conformal
prediction (CP) with unconditional quantile regression (QR) -- a commonly used
tool in econometrics that involves regressing the recentered influence function
(RIF) of the quantile functional over input covariates. Unlike the more
widely-known conditional QR, unconditional QR explicitly captures the impact of
changes in covariate distribution on the quantiles of the marginal distribution
of outcomes. Leveraging this property, our procedure issues adaptive predictive
intervals with localized frequentist coverage guarantees. It operates by
fitting a machine learning model for the RIFs using training data, and then
applying the CP procedure for any test covariate with respect to a
``hypothetical'' covariate distribution localized around the new instance.
Experiments show that our procedure is adaptive to heteroscedasticity, provides
transparent coverage guarantees that are relevant to the test instance at hand,
and performs competitively with existing methods in terms of efficiency.
Related papers
- Conditional Testing based on Localized Conformal p-values [5.6779147365057305]
We define the localized conformal p-values by inverting prediction intervals and prove their theoretical properties.
These defined p-values are then applied to several conditional testing problems to illustrate their practicality.
arXiv Detail & Related papers (2024-09-25T11:30:14Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
We develop a principled procedure for determining when a large language model should abstain from responding in a general domain.
We leverage conformal prediction techniques to develop an abstention procedure that benefits from rigorous theoretical guarantees on the hallucination rate (error rate)
Experimentally, our resulting conformal abstention method reliably bounds the hallucination rate on various closed-book, open-domain generative question answering datasets.
arXiv Detail & Related papers (2024-04-04T11:32:03Z) - Adaptive Conformal Prediction by Reweighting Nonconformity Score [0.0]
We use a Quantile Regression Forest (QRF) to learn the distribution of nonconformity scores and utilize the QRF's weights to assign more importance to samples with residuals similar to the test point.
Our approach enjoys an assumption-free finite sample marginal and training-conditional coverage, and under suitable assumptions, it also ensures conditional coverage.
arXiv Detail & Related papers (2023-03-22T16:42:19Z) - Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling [77.15766509677348]
Conditional generative models often inherit spurious correlations from the training dataset.
This can result in label-conditional distributions that are imbalanced with respect to another latent attribute.
We propose a general two-step strategy to mitigate this issue.
arXiv Detail & Related papers (2022-12-05T08:09:33Z) - Improved conformalized quantile regression [0.0]
Conformalized quantile regression is a procedure that inherits the advantages of conformal prediction and quantile regression.
We propose to cluster the explanatory variables weighted by their permutation importance with an optimized k-means and apply k conformal steps.
To show that this improved version outperforms the classic version of conformalized quantile regression and is more adaptive to heteroscedasticity, we extensively compare the prediction intervals of both in open datasets.
arXiv Detail & Related papers (2022-07-06T16:54:36Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - AdaPT-GMM: Powerful and robust covariate-assisted multiple testing [0.7614628596146599]
We propose a new empirical Bayes method for co-assisted multiple testing with false discovery rate (FDR) control.
Our method refines the adaptive p-value thresholding (AdaPT) procedure by generalizing its masking scheme.
We show in extensive simulations and real data examples that our new method, which we call AdaPT-GMM, consistently delivers high power.
arXiv Detail & Related papers (2021-06-30T05:06:18Z) - On Model Identification and Out-of-Sample Prediction of Principal
Component Regression: Applications to Synthetic Controls [20.96904429337912]
We analyze principal component regression (PCR) in a high-dimensional error-in-variables setting with fixed design.
We establish non-asymptotic out-of-sample prediction guarantees that improve upon the best known rates.
arXiv Detail & Related papers (2020-10-27T17:07:36Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Calibration of Neural Networks using Splines [51.42640515410253]
Measuring calibration error amounts to comparing two empirical distributions.
We introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test.
Our method consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
arXiv Detail & Related papers (2020-06-23T07:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.