論文の概要: Does Your AI Agent Get You? A Personalizable Framework for Approximating Human Models from Argumentation-based Dialogue Traces
- arxiv url: http://arxiv.org/abs/2502.16376v1
- Date: Sat, 22 Feb 2025 22:37:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:17.486863
- Title: Does Your AI Agent Get You? A Personalizable Framework for Approximating Human Models from Argumentation-based Dialogue Traces
- Title(参考訳): あなたのAIエージェントはあなたを得たか? 議論に基づく対話トレースから人間モデルを近似するパーソナライズ可能なフレームワーク
- Authors: Yinxu Tang, Stylianos Loukas Vasileiou, William Yeoh,
- Abstract要約: 本稿では,議論に基づく対話を通じて,AIエージェントが人間の理解に適応できるフレームワークを提案する。
パーソナと呼ばれる我々のアプローチは、確率理論に基づいて、確率重み付け関数とベイズ的信念更新機構を統合する。
我々はペルソナが進化する人間の信念を効果的に捉え、パーソナライズされた相互作用を促進し、最先端の手法を上回ることを実証する。
- 参考スコア(独自算出の注目度): 4.178382980763478
- License:
- Abstract: Explainable AI is increasingly employing argumentation methods to facilitate interactive explanations between AI agents and human users. While existing approaches typically rely on predetermined human user models, there remains a critical gap in dynamically learning and updating these models during interactions. In this paper, we present a framework that enables AI agents to adapt their understanding of human users through argumentation-based dialogues. Our approach, called Persona, draws on prospect theory and integrates a probability weighting function with a Bayesian belief update mechanism that refines a probability distribution over possible human models based on exchanged arguments. Through empirical evaluations with human users in an applied argumentation setting, we demonstrate that Persona effectively captures evolving human beliefs, facilitates personalized interactions, and outperforms state-of-the-art methods.
- Abstract(参考訳): 説明可能なAIは、AIエージェントと人間のユーザ間の対話的な説明を容易にするために、議論手法をますます採用している。
既存のアプローチは通常、所定の人間のユーザーモデルに依存していますが、対話中にこれらのモデルを動的に学習し、更新することには、依然として重大なギャップがあります。
本稿では,AIエージェントが議論に基づく対話を通じて人の理解に適応できるフレームワークを提案する。
我々のアプローチはペルソナと呼ばれ、確率重み付け関数をベイズ的信念更新機構と統合し、交換された議論に基づいて人体モデル上の確率分布を洗練させる。
応用議論環境におけるユーザによる経験的評価を通じて、ペルソナは進化する人間の信念を効果的に捉え、パーソナライズされたインタラクションを促進し、最先端の手法より優れていることを示す。
関連論文リスト
- Enhancing Human-Like Responses in Large Language Models [0.0]
我々は、AIシステムにおける自然言語理解、会話のコヒーレンス、感情的知性を高める技術に焦点を当てている。
この研究は、多様なデータセットによる微調整、心理学的原則の取り入れ、人間の推論パターンをよりよく模倣するモデルの設計など、さまざまなアプローチを評価している。
論文 参考訳(メタデータ) (2025-01-09T07:44:06Z) - Collaborative Instance Navigation: Leveraging Agent Self-Dialogue to Minimize User Input [54.81155589931697]
我々は,ナビゲーション中の動的エージェントと人間との相互作用を考慮したCoIN(Collaborative Instance Navigation)を提案する。
CoINに対処するために,新しいエージェント・ユーザ・インタラクションとUncerTainty Awareness (AIUTA)を提案する。
AIUTAは、最先端のメソッドに対するナビゲーションにおける競合的なパフォーマンスを実現し、ユーザの入力を処理する際の柔軟性を示している。
論文 参考訳(メタデータ) (2024-12-02T08:16:38Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Approximating Human Models During Argumentation-based Dialogues [4.178382980763478]
説明可能なAI計画(XAIP)の主な課題は、モデルの和解である。
本稿では,AIエージェントによる確率的人間モデル学習と更新を可能にする新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-28T23:22:18Z) - A Multi-Modal Explainability Approach for Human-Aware Robots in Multi-Party Conversation [38.227022474450834]
本稿では,従来の最先端技術と比較して性能が向上したアドレス推定モデルを提案する。
また、上記のアーキテクチャに説明可能性と透明性を組み込むいくつかの方法を提案する。
論文 参考訳(メタデータ) (2024-05-20T13:09:32Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - Improving Personality Consistency in Conversation by Persona Extending [22.124187337032946]
本稿では,Persona Retrieval Model(PRM)とPosterior-Scored Transformer(PS-Transformer)の2つのサブコンポーネントからなる新しい検索・予測パラダイムを提案する。
提案モデルでは,自動測定と人的評価の両面で大幅に改善されている。
論文 参考訳(メタデータ) (2022-08-23T09:00:58Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Deep Interpretable Models of Theory of Mind For Human-Agent Teaming [0.7734726150561086]
我々は、他の観測対象の意図をモデル化するための解釈可能なモジュラー・ニューラル・フレームワークを開発する。
Minecraftの検索および救助タスクで、人間の参加者のデータに関する実験を行い、アプローチの有効性を実証します。
論文 参考訳(メタデータ) (2021-04-07T06:18:58Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
現在の大きな成功にもかかわらず、ディープラーニングベースのAIシステムは、微妙な敵対的ノイズによって容易に騙されることを示した。
骨格に基づくヒトの相互作用のケーススタディに基づき、相互作用に対する新しい敵対的攻撃を提案する。
本研究では、安全クリティカルなアプリケーションにAIシステムをデプロイする際に慎重に対処する必要があるAIと人間との相互作用ループにおける潜在的なリスクを強調します。
論文 参考訳(メタデータ) (2021-01-17T16:23:20Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。