論文の概要: Enhancing Human-Like Responses in Large Language Models
- arxiv url: http://arxiv.org/abs/2501.05032v1
- Date: Thu, 09 Jan 2025 07:44:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:40.912166
- Title: Enhancing Human-Like Responses in Large Language Models
- Title(参考訳): 大規模言語モデルにおけるヒューマンライクな応答の強化
- Authors: Ethem Yağız Çalık, Talha Rüzgar Akkuş,
- Abstract要約: 我々は、AIシステムにおける自然言語理解、会話のコヒーレンス、感情的知性を高める技術に焦点を当てている。
この研究は、多様なデータセットによる微調整、心理学的原則の取り入れ、人間の推論パターンをよりよく模倣するモデルの設計など、さまざまなアプローチを評価している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper explores the advancements in making large language models (LLMs) more human-like. We focus on techniques that enhance natural language understanding, conversational coherence, and emotional intelligence in AI systems. The study evaluates various approaches, including fine-tuning with diverse datasets, incorporating psychological principles, and designing models that better mimic human reasoning patterns. Our findings demonstrate that these enhancements not only improve user interactions but also open new possibilities for AI applications across different domains. Future work will address the ethical implications and potential biases introduced by these human-like attributes.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)をより人間らしくすることの進歩について考察する。
我々は、AIシステムにおける自然言語理解、会話のコヒーレンス、感情的知性を高める技術に焦点を当てている。
この研究は、多様なデータセットによる微調整、心理学的原則の取り入れ、人間の推論パターンをよりよく模倣するモデルの設計など、さまざまなアプローチを評価している。
我々の発見は、これらの拡張がユーザーインタラクションを改善するだけでなく、異なるドメインにわたるAIアプリケーションに新たな可能性を開くことを示しています。
今後の研究は、これらの人間のような属性によってもたらされる倫理的意味と潜在的なバイアスに対処する。
関連論文リスト
- MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - ChatGPT Role-play Dataset: Analysis of User Motives and Model Naturalness [4.564433526993029]
本研究は,ChatGPTの会話における動作を,通常とロールプレイの両方で分析することにより,異なる環境での会話においてどのように振る舞うかを検討する。
本研究は,ChatGPTと対話する際のユーザのモチベーションの多様性を強調し,人間とAIの自然な会話の微妙なダイナミクスだけでなく,人間とAIのコミュニケーションの有効性向上のための新たな手段を提供する。
論文 参考訳(メタデータ) (2024-03-26T22:01:13Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
意思決定支援システムにおける人工知能の活用は、技術的進歩に不相応に焦点を合わせてきた。
人間中心の視点は、既存のプロセスとのシームレスな統合のためにAIソリューションを設計することで、この懸念を緩和しようとする。
論文 参考訳(メタデータ) (2023-10-30T17:46:38Z) - Towards More Human-like AI Communication: A Review of Emergent
Communication Research [0.0]
創発的コミュニケーション(英: Emergent Communication, Emecom)は、自然言語を利用できる人工エージェントの開発を目的とした研究分野である。
本稿では,文献の共通点と,それらが人間同士の相互作用にどのように関係しているかを概説する。
2つのサブカテゴリを特定し、その特性とオープンな課題を強調します。
論文 参考訳(メタデータ) (2023-08-01T14:43:10Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Estimating the Personality of White-Box Language Models [0.589889361990138]
大規模なテキストコーパスで訓練された大規模言語モデルは、至る所で広範囲のアプリケーションで使用されている。
既存の研究は、これらのモデルが人間の偏見を捉え、捉えていることを示している。
これらのバイアス、特に害を引き起こす可能性のあるバイアスの多くは、十分に調査されている。
しかし、これらのモデルによって受け継がれた人間の性格特性を推測し、変化させる研究は、ほとんど、あるいは存在しない。
論文 参考訳(メタデータ) (2022-04-25T23:53:53Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Building Human-like Communicative Intelligence: A Grounded Perspective [1.0152838128195465]
言語学習における驚くべき進歩の後、AIシステムは人間のコミュニケーション能力の重要な側面を反映しない天井に近づいたようだ。
本稿は、ナチビストと象徴的パラダイムに基づく認知にインスパイアされたAIの方向性には、現代AIの進歩を導くために必要なサブストラテジと具体性がないことを示唆する。
本稿では,「地下」言語知能構築のための具体的かつ実装可能なコンポーネントのリストを提案する。
論文 参考訳(メタデータ) (2022-01-02T01:43:24Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。