Automatic Detection of Research Values from Scientific Abstracts Across Computer Science Subfields
- URL: http://arxiv.org/abs/2502.16390v2
- Date: Wed, 26 Feb 2025 00:43:11 GMT
- Title: Automatic Detection of Research Values from Scientific Abstracts Across Computer Science Subfields
- Authors: Hang Jiang, Tal August, Luca Soldaini, Kyle Lo, Maria Antoniak,
- Abstract summary: It is crucial to explore what specific research values, known as basic and fundamental beliefs that guide or motivate research attitudes or actions.<n>Prior research has manually analyzed research values from a small sample of machine learning papers.<n>This paper introduces a detailed annotation scheme featuring ten research values that guide CS-related research.
- Score: 32.82061305764996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of Computer science (CS) has rapidly evolved over the past few decades, providing computational tools and methodologies to various fields and forming new interdisciplinary communities. This growth in CS has significantly impacted institutional practices and relevant research communities. Therefore, it is crucial to explore what specific research values, known as basic and fundamental beliefs that guide or motivate research attitudes or actions, CS-related research communities promote. Prior research has manually analyzed research values from a small sample of machine learning papers. No prior work has studied the automatic detection of research values in CS from large-scale scientific texts across different research subfields. This paper introduces a detailed annotation scheme featuring ten research values that guide CS-related research. Based on the scheme, we build value classifiers to scale up the analysis and present a systematic study over 226,600 paper abstracts from 32 CS-related subfields and 86 popular publishing venues over ten years.
Related papers
- CS-PaperSum: A Large-Scale Dataset of AI-Generated Summaries for Scientific Papers [3.929864777332447]
CS-PaperSum is a large-scale dataset of 91,919 papers from 31 top-tier computer science conferences.
Our dataset enables automated literature analysis, research trend forecasting, and AI-driven scientific discovery.
arXiv Detail & Related papers (2025-02-27T22:48:35Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.<n>Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Onologies are widely used for representing domain knowledge and meta data.<n> logical reasoning that can directly support are quite limited in learning, approximation and prediction.<n>One straightforward solution is to integrate statistical analysis and machine learning.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
We introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of ScientificAspects.
MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years.
We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset.
arXiv Detail & Related papers (2024-06-10T15:19:09Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
We propose a systematic framework for analyzing the evolution of research topics in a scientific field using causal discovery and inference techniques.
We define three variables to encompass diverse facets of the evolution of research topics within NLP.
We utilize a causal discovery algorithm to unveil the causal connections among these variables using observational data.
arXiv Detail & Related papers (2023-05-22T11:08:00Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Research Topic Flows in Co-Authorship Networks [0.0]
We propose a graph structure for the analysis of research topic flows between scientific authors and their respective research fields.
Our method requires for the construction of a TFN solely a corpus of publications (i.e., author and abstract information)
We demonstrate the utility of TFNs by applying our method to two comprehensive corpora of altogether 20 Mio. publications spanning more than 60 years of research in the fields computer science and mathematics.
arXiv Detail & Related papers (2022-06-16T07:45:53Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Research Scholar Interest Mining Method based on Load Centrality [15.265191824669555]
This paper proposes a research scholar interest mining algorithm based on load centrality.
The regional structure of each topic can be used to closely calculate the weight of the centrality research model of the node.
The scientific research cooperation based on the load rate center proposed in this paper can effectively extract the interests of scientific research scholars.
arXiv Detail & Related papers (2022-03-21T04:16:46Z) - The CSO Classifier: Ontology-Driven Detection of Research Topics in
Scholarly Articles [0.0]
We present a new unsupervised approach for automatically classifying research papers according to the Computer Science Ontology (CSO)
The CSO takes as input the metadata associated with a research paper (title, abstract, keywords) and returns a selection of research concepts drawn from the ontology.
The approach was evaluated on a gold standard of manually annotated articles yielding a significant improvement over alternative methods.
arXiv Detail & Related papers (2021-04-02T09:02:32Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
We focus on document-level embeddings based on the semantic and relational aspects of articles, using Natural Language Processing (NLP) and Graph Neural Networks (GNNs)
Our results show that using NLP we can encode a semantic space of articles, while with GNN we are able to build a relational space where the social practices of a research community are also encoded.
arXiv Detail & Related papers (2020-11-05T14:57:41Z) - Topic Space Trajectories: A case study on machine learning literature [0.0]
We present topic space trajectories, a structure that allows for the comprehensible tracking of research topics.
We show the applicability of our approach on a publication corpus spanning 50 years of machine learning research from 32 publication venues.
Our novel analysis method may be employed for paper classification, for the prediction of future research topics, and for the recommendation of fitting conferences and journals for submitting unpublished work.
arXiv Detail & Related papers (2020-10-23T10:53:42Z) - Extracting a Knowledge Base of Mechanisms from COVID-19 Papers [50.17242035034729]
We pursue the construction of a knowledge base (KB) of mechanisms.
We develop a broad, unified schema that strikes a balance between relevance and breadth.
Experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature.
arXiv Detail & Related papers (2020-10-08T07:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.