論文の概要: Tool or Tutor? Experimental evidence from AI deployment in cancer diagnosis
- arxiv url: http://arxiv.org/abs/2502.16411v1
- Date: Sun, 23 Feb 2025 02:47:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:56:10.318108
- Title: Tool or Tutor? Experimental evidence from AI deployment in cancer diagnosis
- Title(参考訳): ツールかチューターか? がん診断におけるAI導入の実験的証拠
- Authors: Vivianna Fang He, Sihan Li, Phanish Puranam,
- Abstract要約: 本稿では,AIによる訓練とAIによるタスク完了を補完し,この仮説を肺癌診断の文脈で検証することを提案する。
以上の結果から,AI統合トレーニングとAI支援が独立して診断性能を向上する一方で,それらの組み合わせが最高の精度を示した。
- 参考スコア(独自算出の注目度): 0.1755623101161125
- License:
- Abstract: Professionals increasingly use Artificial Intelligence (AI) to enhance their capabilities and assist with task execution. While prior research has examined these uses separately, their potential interaction remains underexplored. We propose that AI-driven training (tutor effect) and AI-assisted task completion (tool effect) can be complementary and test this hypothesis in the context of lung cancer diagnosis. In a field experiment with 334 medical students, we manipulated AI deployment in training, in practice, and in both. Our findings reveal that while AI-integrated training and AI assistance independently improved diagnostic performance, their combination yielded the highest accuracy. These results underscore AI's dual role in enhancing human performance through both learning and real-time support, offering insights into AI deployment in professional settings where human expertise remains essential.
- Abstract(参考訳): プロフェッショナルは人工知能(AI)を使って能力を高め、タスクの実行を支援する。
以前の研究ではこれらの用途は別々に検討されているが、潜在的な相互作用は未解明のままである。
本稿では,AIによる訓練(チューター効果)とAIによるタスク完了(ツール効果)を補完し,この仮説を肺癌診断の文脈で検証することを提案する。
334人の医学生によるフィールド実験では、トレーニング、実践、そしてその両方においてAIの展開を操作した。
以上の結果から,AI統合トレーニングとAI支援が独立して診断性能を向上する一方で,それらの組み合わせが最高の精度を示した。
これらの結果は、学習とリアルタイムサポートの両方を通じて、人間のパフォーマンスを向上させるAIの二重の役割を強調し、人間の専門知識が不可欠であるプロの環境でAIデプロイメントに関する洞察を提供する。
関連論文リスト
- Can Domain Experts Rely on AI Appropriately? A Case Study on AI-Assisted Prostate Cancer MRI Diagnosis [19.73932120146401]
MRI画像を用いた前立腺癌診断において,放射線科医と深く連携する。
インターフェースを開発し、AIアシストとパフォーマンスフィードバックがドメインエキスパートの意思決定をどのように形作るかを研究する2つの実験を行う。
論文 参考訳(メタデータ) (2025-02-03T18:59:38Z) - Human-AI Collaborative Game Testing with Vision Language Models [0.0]
本研究では,AI支援ワークフローの開発と実験により,AIがゲームテストを改善する方法について検討する。
我々は、AIサポートの有無、欠陥や設計資料の詳細な知識の有無の4つの条件下で、AIアシストの有効性を評価する。
その結果、特に詳細な知識と組み合わせた場合、AIアシストは欠陥識別性能を著しく改善することが示された。
論文 参考訳(メタデータ) (2025-01-20T23:14:23Z) - AI-Enhanced Sensemaking: Exploring the Design of a Generative AI-Based Assistant to Support Genetic Professionals [38.54324092761751]
生成AIは、知識労働を変革する可能性があるが、生成AIの使用と相互作用を知識労働者がどのように想定するかを理解するためには、さらなる研究が必要である。
本研究は、ゲノム全配列(WGS)およびその他の臨床データを分析して稀な疾患診断を行う際に、遺伝専門家を支援するための生成AIアシスタントを設計することに焦点を当てた。
論文 参考訳(メタデータ) (2024-12-19T22:54:49Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
我々のアルゴリズムは、人間の専門家が実験プロセスでリードすることを可能にする。
我々のアルゴリズムは、AIや人間よりも高速に、サブ線形に収束することを示す。
論文 参考訳(メタデータ) (2023-03-03T02:56:05Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Advancing Human-AI Complementarity: The Impact of User Expertise and
Algorithmic Tuning on Joint Decision Making [10.890854857970488]
ユーザのドメイン知識、AIシステムのメンタルモデル、レコメンデーションへの信頼など、多くの要因がヒューマンAIチームの成功に影響を与える可能性がある。
本研究は,非自明な血管ラベル作成作業において,血管が流れているか停止しているかを被験者に示すことを目的とした。
以上の結果から,AI-Assistantからの推薦はユーザの意思決定に役立つが,AIに対するユーザベースラインのパフォーマンスや,AIエラー型の相補的チューニングといった要因は,チーム全体のパフォーマンスに大きな影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2022-08-16T21:39:58Z) - Who Goes First? Influences of Human-AI Workflow on Decision Making in
Clinical Imaging [24.911186503082465]
本研究は, 放射線医学における診断セッション開始時と, 放射線科医の仮決定後のAI支援の効果について検討した。
その結果、AI推論をレビューする前に仮回答を登録するよう求められている参加者は、アドバイスが正確かどうかに関わらず、AIに同意する確率が低く、AIと意見の相違がある場合には、同僚の第二の意見を求める確率が低いことがわかった。
論文 参考訳(メタデータ) (2022-05-19T16:59:25Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。