Feature Space Perturbation: A Panacea to Enhanced Transferability Estimation
- URL: http://arxiv.org/abs/2502.16471v1
- Date: Sun, 23 Feb 2025 07:07:49 GMT
- Title: Feature Space Perturbation: A Panacea to Enhanced Transferability Estimation
- Authors: Prafful Kumar Khoba, Zijian Wang, Chetan Arora, Mahsa Baktashmotlagh,
- Abstract summary: We introduce a feature perturbation method that enhances the transferability estimation process by systematically altering the feature space.<n>Our method includes a Spread operation that increases intra-class variability, adding complexity within classes, and an Attract operation that minimizes the distances between different classes, thereby blurring the class boundaries.
- Score: 13.930288332118561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging a transferability estimation metric facilitates the non-trivial challenge of selecting the optimal model for the downstream task from a pool of pre-trained models. Most existing metrics primarily focus on identifying the statistical relationship between feature embeddings and the corresponding labels within the target dataset, but overlook crucial aspect of model robustness. This oversight may limit their effectiveness in accurately ranking pre-trained models. To address this limitation, we introduce a feature perturbation method that enhances the transferability estimation process by systematically altering the feature space. Our method includes a Spread operation that increases intra-class variability, adding complexity within classes, and an Attract operation that minimizes the distances between different classes, thereby blurring the class boundaries. Through extensive experimentation, we demonstrate the efficacy of our feature perturbation method in providing a more precise and robust estimation of model transferability. Notably, the existing LogMe method exhibited a significant improvement, showing a 28.84% increase in performance after applying our feature perturbation method.
Related papers
- Simple and Effective Specialized Representations for Fair Classifiers [4.264842065153012]
We propose a novel approach to fair classification based on the characteristic function distance.<n>By utilizing characteristic functions, we achieve a more stable and efficient solution compared to traditional methods.<n>Our method maintains robustness and computational efficiency, making it a practical solution for real-world applications.
arXiv Detail & Related papers (2025-05-16T22:59:46Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DML aims to learn a discriminative high-dimensional embedding space for downstream tasks like classification, clustering, and retrieval.
To maintain the structure of embedding space and avoid feature collapse, we propose a novel loss function called Anti-Collapse Loss.
Comprehensive experiments on benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-07-03T13:44:20Z) - TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression [11.040033344386366]
We propose a two-step method with a novel fused-regularizer to improve the learning performance on a target task with limited samples.
Nonasymptotic bound is provided for the estimation error of the target model.
We extend the method to a distributed setting, allowing for a pretraining-finetuning strategy.
arXiv Detail & Related papers (2024-04-01T14:58:16Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.<n>However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - Robust Transfer Learning with Unreliable Source Data [13.276850367115333]
We introduce a novel quantity called the ''ambiguity level'' that measures the discrepancy between the target and source regression functions.
We propose a simple transfer learning procedure, and establish a general theorem that shows how this new quantity is related to the transferability of learning.
arXiv Detail & Related papers (2023-10-06T21:50:21Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Estimation and inference for transfer learning with high-dimensional
quantile regression [3.4510296013600374]
We propose a transfer learning procedure in the framework of high-dimensional quantile regression models.
We establish error bounds of transfer learning estimator based on delicately selected transferable source domains.
By adopting data-splitting technique, we advocate a transferability detection approach that guarantees to circumvent negative transfer.
arXiv Detail & Related papers (2022-11-26T14:40:19Z) - Class-Incremental Learning by Knowledge Distillation with Adaptive
Feature Consolidation [39.97128550414934]
We present a novel class incremental learning approach based on deep neural networks.
It continually learns new tasks with limited memory for storing examples in the previous tasks.
Our algorithm is based on knowledge distillation and provides a principled way to maintain the representations of old models.
arXiv Detail & Related papers (2022-04-02T16:30:04Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
We propose a deep reinforcement learning approach that transforms the optimization procedure into an end-to-end learnable process.
Our experiments on real-world data show that our method is model-agnostic, relying only on feedback from model predictions.
arXiv Detail & Related papers (2021-06-04T16:54:36Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.