Advanced Chain-of-Thought Reasoning for Parameter Extraction from Documents Using Large Language Models
- URL: http://arxiv.org/abs/2502.16540v1
- Date: Sun, 23 Feb 2025 11:19:44 GMT
- Title: Advanced Chain-of-Thought Reasoning for Parameter Extraction from Documents Using Large Language Models
- Authors: Hong Cai Chen, Yi Pin Xu, Yang Zhang,
- Abstract summary: Current methods struggle to handle high-dimensional design data and meet the demands of real-time processing.<n>We propose an innovative framework that automates the extraction of parameters and the generation of PySpice models.<n> Experimental results show that applying all three methods together improves retrieval precision by 47.69% and reduces processing latency by 37.84%.
- Score: 3.7324910012003656
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Extracting parameters from technical documentation is crucial for ensuring design precision and simulation reliability in electronic design. However, current methods struggle to handle high-dimensional design data and meet the demands of real-time processing. In electronic design automation (EDA), engineers often manually search through extensive documents to retrieve component parameters required for constructing PySpice models, a process that is both labor-intensive and time-consuming. To address this challenge, we propose an innovative framework that leverages large language models (LLMs) to automate the extraction of parameters and the generation of PySpice models directly from datasheets. Our framework introduces three Chain-of-Thought (CoT) based techniques: (1) Targeted Document Retrieval (TDR), which enables the rapid identification of relevant technical sections; (2) Iterative Retrieval Optimization (IRO), which refines the parameter search through iterative improvements; and (3) Preference Optimization (PO), which dynamically prioritizes key document sections based on relevance. Experimental results show that applying all three methods together improves retrieval precision by 47.69% and reduces processing latency by 37.84%. Furthermore, effect size analysis using Cohen's d reveals that PO significantly reduces latency, while IRO contributes most to precision enhancement. These findings underscore the potential of our framework to streamline EDA processes, enhance design accuracy, and shorten development timelines. Additionally, our algorithm has model-agnostic generalization, meaning it can improve parameter search performance across different LLMs.
Related papers
- ZeroLM: Data-Free Transformer Architecture Search for Language Models [54.83882149157548]
Current automated proxy discovery approaches suffer from extended search times, susceptibility to data overfitting, and structural complexity.
This paper introduces a novel zero-cost proxy methodology that quantifies model capacity through efficient weight statistics.
Our evaluation demonstrates the superiority of this approach, achieving a Spearman's rho of 0.76 and Kendall's tau of 0.53 on the FlexiBERT benchmark.
arXiv Detail & Related papers (2025-03-24T13:11:22Z) - TD3: Tucker Decomposition Based Dataset Distillation Method for Sequential Recommendation [50.23504065567638]
This paper introduces textbfTD3, a novel textbfDataset textbfDistillation method within a meta-learning framework.
TD3 distills a fully expressive emphsynthetic sequence summary from original data.
An augmentation technique allows the learner to closely fit the synthetic summary, ensuring an accurate update of it in the emphouter-loop.
arXiv Detail & Related papers (2025-02-05T03:13:25Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - DELIFT: Data Efficient Language model Instruction Fine Tuning [13.538140114667772]
We introduce DELIFT, a novel algorithm that systematically optimize data selection across the three key stages of fine-tuning.
Experiments across various tasks and model scales demonstrate that DELIFT can reduce the fine-tuning data size by up to 70% without compromising performance.
arXiv Detail & Related papers (2024-11-07T04:38:29Z) - REP: Resource-Efficient Prompting for Rehearsal-Free Continual Learning [23.92661395403251]
Recent rehearsal-free methods, guided by prompts, excel in vision-related continual learning (CL) with drifting data but lack resource efficiency.<n>We introduce Resource-Efficient Prompting (REP), which improves the computational and memory efficiency of prompt-based rehearsal-free methods.<n>Our approach employs swift prompt selection to refine input data using a carefully provisioned model.
arXiv Detail & Related papers (2024-06-07T09:17:33Z) - Refining Joint Text and Source Code Embeddings for Retrieval Task with Parameter-Efficient Fine-Tuning [0.0]
We propose a fine-tuning frame-work that leverages.
Efficient Fine-Tuning (PEFT) techniques.
We demonstrate that the proposed fine-tuning framework has the potential to improve code-text retrieval performance by tuning only 0.4% parameters at most.
arXiv Detail & Related papers (2024-05-07T08:50:25Z) - Low-Rank Representations Meets Deep Unfolding: A Generalized and
Interpretable Network for Hyperspectral Anomaly Detection [41.50904949744355]
Current hyperspectral anomaly detection (HAD) benchmark datasets suffer from low resolution, simple background, and small size of the detection data.
These factors also limit the performance of the well-known low-rank representation (LRR) models in terms of robustness.
We build a new set of HAD benchmark datasets for improving the robustness of the HAD algorithm in complex scenarios, AIR-HAD for short.
arXiv Detail & Related papers (2024-02-23T14:15:58Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Evaluating natural language processing models with generalization
metrics that do not need access to any training or testing data [66.11139091362078]
We provide the first model selection results on large pretrained Transformers from Huggingface using generalization metrics.
Despite their niche status, we find that metrics derived from the heavy-tail (HT) perspective are particularly useful in NLP tasks.
arXiv Detail & Related papers (2022-02-06T20:07:35Z) - Surrogate Modelling for Injection Molding Processes using Machine
Learning [0.23090185577016442]
Injection molding is one of the most popular manufacturing methods for the modeling of complex plastic objects.
We propose a baseline for a data processing pipeline that includes the extraction of data from Moldflow simulation projects.
We evaluate machine learning models for fill time and deflection distribution prediction and provide baseline values of MSE and RMSE metrics.
arXiv Detail & Related papers (2021-07-30T12:13:52Z) - FIST: A Feature-Importance Sampling and Tree-Based Method for Automatic
Design Flow Parameter Tuning [27.08970520268831]
We introduce a machine learning-based automatic parameter tuning methodology that aims to find the best design quality with a limited number of trials.
We leverage a state-of-the-art XGBoost model and propose a novel dynamic tree technique to overcome overfitting.
Experimental results on benchmark circuits show that our approach achieves 25% improvement in design quality or reduction in sampling cost.
arXiv Detail & Related papers (2020-11-26T23:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.