論文の概要: LawPal : A Retrieval Augmented Generation Based System for Enhanced Legal Accessibility in India
- arxiv url: http://arxiv.org/abs/2502.16573v1
- Date: Sun, 23 Feb 2025 13:45:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:57:13.102440
- Title: LawPal : A Retrieval Augmented Generation Based System for Enhanced Legal Accessibility in India
- Title(参考訳): インドにおける法律アクセシビリティ向上のための検索型Augmented GenerationベースシステムLawPal
- Authors: Dnyanesh Panchal, Aaryan Gole, Vaibhav Narute, Raunak Joshi,
- Abstract要約: インドにおける法的な知識へのアクセスは、認識の欠如、誤報、司法資源へのアクセスの制限によってしばしば妨げられる。
本稿では,ベクトルストア指向FAISSを用いたRAGに基づく法定チャットボットを提案する。
我々のモデルは、法律書、公式文書、インド憲法を含む広範なデータセットを用いて訓練されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Access to legal knowledge in India is often hindered by a lack of awareness, misinformation and limited accessibility to judicial resources. Many individuals struggle to navigate complex legal frameworks, leading to the frequent misuse of laws and inadequate legal protection. To address these issues, we propose a Retrieval-Augmented Generation (RAG)-based legal chatbot powered by vectorstore oriented FAISS for efficient and accurate legal information retrieval. Unlike traditional chatbots, our model is trained using an extensive dataset comprising legal books, official documentation and the Indian Constitution, ensuring accurate responses to even the most complex or misleading legal queries. The chatbot leverages FAISS for rapid vector-based search, significantly improving retrieval speed and accuracy. It is also prompt-engineered to handle twisted or ambiguous legal questions, reducing the chances of incorrect interpretations. Apart from its core functionality of answering legal queries, the platform includes additional features such as real-time legal news updates, legal blogs, and access to law-related books, making it a comprehensive resource for users. By integrating advanced AI techniques with an optimized retrieval system, our chatbot aims to democratize legal knowledge, enhance legal literacy, and prevent the spread of misinformation. The study demonstrates that our approach effectively improves legal accessibility while maintaining high accuracy and efficiency, thereby contributing to a more informed and empowered society.
- Abstract(参考訳): インドにおける法的な知識へのアクセスは、認識の欠如、誤報、司法資源へのアクセスの制限によってしばしば妨げられる。
多くの個人は複雑な法的枠組みをナビゲートするのに苦労し、しばしば法律の誤用と不適切な法的保護につながる。
これらの問題に対処するために,ベクトルストア指向のFAISSをベースとした検索型音声生成(RAG)に基づく法定チャットボットを提案する。
従来のチャットボットとは異なり、私たちのモデルは、法律書、公式文書、インド憲法を含む広範なデータセットを使用してトレーニングされ、最も複雑で誤解を招く法的クエリに対する正確な応答が保証されます。
このチャットボットはFAISSを利用して高速なベクトルベースの検索を行い、検索速度と精度を大幅に向上させる。
また、ツイストや曖昧な法的問題を扱うように即時設計され、誤った解釈の可能性を減らしている。
法的な問い合わせに答えることのコア機能以外にも、リアルタイムの法的なニュースアップデート、法的なブログ、法律関連の書籍へのアクセスなどの追加機能が含まれており、ユーザーにとって総合的なリソースとなっている。
高度なAI技術と最適化された検索システムを統合することで、私たちのチャットボットは法的知識を民主化し、法的リテラシーを高め、誤情報の拡散を防ぐことを目的としています。
本研究は, 高い精度と効率を維持しつつ, 法的アクセシビリティを効果的に向上し, より情報に富んだ社会に寄与することが実証された。
関連論文リスト
- NyayaAnumana & INLegalLlama: The Largest Indian Legal Judgment Prediction Dataset and Specialized Language Model for Enhanced Decision Analysis [5.790242888372048]
本稿では,インドにおける判例の最大かつ多種多様なコーパスであるNyayaAnumanaについて紹介する。
ニヤヤ・アヌナナには最高裁判所、高等裁判所、法廷、地方裁判所、日刊令など幅広い事件がある。
InLegalLlamaは,インド法体系の複雑さに合わせたドメイン固有生成型大規模言語モデル(LLM)である。
論文 参考訳(メタデータ) (2024-12-11T13:50:17Z) - Hybrid Deep Learning for Legal Text Analysis: Predicting Punishment Durations in Indonesian Court Rulings [0.0]
本研究は,文長の深層学習に基づく予測システムを開発した。
我々のモデルは,CNNとBiLSTMとアテンション機構を組み合わせたもので,R2乗のスコアは0.5893。
論文 参考訳(メタデータ) (2024-10-26T07:07:48Z) - DeliLaw: A Chinese Legal Counselling System Based on a Large Language Model [16.63238943983347]
DeliLawは、大きな言語モデルに基づく中国の法律カウンセリングシステムである。
ユーザーはDeliLawシステム上で、専門家の法的質問や法的記事の検索、関連する判断事例などを対話モードで参照することができる。
論文 参考訳(メタデータ) (2024-08-01T07:54:52Z) - LeKUBE: A Legal Knowledge Update BEnchmark [30.62956609611883]
LLM(Large Language Models)の法的な知識をどう更新するかは、実際重要な研究課題となっている。
知識更新手法を評価するための既存のベンチマークは、主にオープンドメイン向けに設計されている。
法定LLMの知識更新手法を5次元にわたって評価する法定知識更新ベンチマーク(LeKUBE)を導入する。
論文 参考訳(メタデータ) (2024-07-19T10:40:10Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Having your Privacy Cake and Eating it Too: Platform-supported Auditing
of Social Media Algorithms for Public Interest [70.02478301291264]
ソーシャルメディアプラットフォームは、情報や機会へのアクセスをキュレートするので、公衆の言論を形成する上で重要な役割を果たす。
これまでの研究では、これらのアルゴリズムが偏見や差別的な結果をもたらすことを示すためにブラックボックス法が用いられてきた。
本稿では,提案法の目標を満たすプラットフォーム支援型監査手法を提案する。
論文 参考訳(メタデータ) (2022-07-18T17:32:35Z) - Pile of Law: Learning Responsible Data Filtering from the Law and a
256GB Open-Source Legal Dataset [46.156169284961045]
我々は, フィルター材料におけるトレードオフに直接対処する法則に基づくフィルタリングへのアプローチを提案する。
まず、256GBのオープンソース英語および行政データのデータセットであるPile of Lawを収集、利用可能にします。
第二に、政府が有毒または私的コンテンツを含めることを規制するために開発した法規範を精査する。
第3に、Pile of Lawが研究者に、このようなフィルタリングルールを直接データから学習する機会を提供する方法を示します。
論文 参考訳(メタデータ) (2022-07-01T06:25:15Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
LJP(Lawal Judgment Prediction)は、その事実を記述したテキストが与えられた場合、訴訟の判断結果を自動的に予測するタスクである。
LJP の課題を解決するために,エンド・ツー・エンドのモデル LADAN を提案する。
論文 参考訳(メタデータ) (2020-04-06T11:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。