Saarthi: The First AI Formal Verification Engineer
- URL: http://arxiv.org/abs/2502.16662v2
- Date: Sat, 01 Mar 2025 13:02:14 GMT
- Title: Saarthi: The First AI Formal Verification Engineer
- Authors: Aman Kumar, Deepak Narayan Gadde, Keerthan Kopparam Radhakrishna, Djones Lettnin,
- Abstract summary: Devin has made a significant buzz in the Artificial Intelligence (AI) community as the world's first fully autonomous AI software engineer.<n>We present a similar fully autonomous AI formal verification engineer, Saarthi, capable of verifying a given RTL design end-to-end.
- Score: 2.1626093085892144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Devin has made a significant buzz in the Artificial Intelligence (AI) community as the world's first fully autonomous AI software engineer, capable of independently developing software code. Devin uses the concept of agentic workflow in Generative AI (GenAI), which empowers AI agents to engage in a more dynamic, iterative, and self-reflective process. In this paper, we present a similar fully autonomous AI formal verification engineer, Saarthi, capable of verifying a given RTL design end-to-end using an agentic workflow. With Saarthi, verification engineers can focus on more complex problems, and verification teams can strive for more ambitious goals. The domain-agnostic implementation of Saarthi makes it scalable for use across various domains such as RTL design, UVM-based verification, and others.
Related papers
- Explainability for Embedding AI: Aspirations and Actuality [1.8130068086063336]
Explainable AI (XAI) may allow developers to understand better the systems they build.
Existing XAI systems still fall short of this aspiration.
We see an unmet need to provide developers with adequate support mechanisms to cope with this complexity.
arXiv Detail & Related papers (2025-04-20T14:20:01Z) - Challenges and Paths Towards AI for Software Engineering [55.95365538122656]
We discuss progress in AI for software engineering in threefold manner.
First, we provide a structured taxonomy of concrete tasks in AI for software engineering.
Second, we outline several key bottlenecks that limit current approaches.
arXiv Detail & Related papers (2025-03-28T17:17:57Z) - AI Software Engineer: Programming with Trust [33.88230182444934]
Large Language Models (LLMs) have shown surprising proficiency in generating code snippets.<n>We argue that successfully deploying AI software engineers requires a level of trust equal to or even greater than the trust established by human-driven software engineering practices.
arXiv Detail & Related papers (2025-02-19T14:28:42Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We build a self-contained environment with data that mimics a small software company environment.<n>We find that with the most competitive agent, 24% of the tasks can be completed autonomously.<n>This paints a nuanced picture on task automation with LM agents.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z) - AI in Software Engineering: A Survey on Project Management Applications [3.156791351998142]
Machine Learning (ML) employs algorithms that undergo training on data sets, enabling them to carry out specific tasks autonomously.
AI holds immense potential in the field of software engineering, particularly in project management and planning.
arXiv Detail & Related papers (2023-07-27T23:02:24Z) - Prompt Sapper: A LLM-Empowered Production Tool for Building AI Chains [31.080896878139402]
We propose the concept of AI chain and introduce the best principles and practices that have been accumulated in software engineering for decades into AI chain engineering.
We also develop a no-code integrated development environment, Prompt Sapper, which embodies these AI chain engineering principles and patterns naturally in the process of building AI chains.
arXiv Detail & Related papers (2023-06-21T05:31:00Z) - Prompt Sapper: LLM-Empowered Software Engineering Infrastructure for
AI-Native Services [37.05145017386908]
Prompt Sapper is committed to support the development of AI-native services by AI chain engineering.
It creates a large language model (LLM) empowered software engineering infrastructure for authoring AI chains through human-AI collaborative intelligence.
This article will introduce the R&D motivation behind Prompt Sapper, along with its corresponding AI chain engineering methodology and technical practices.
arXiv Detail & Related papers (2023-06-04T01:47:42Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face [85.25054021362232]
Large language models (LLMs) have exhibited exceptional abilities in language understanding, generation, interaction, and reasoning.
LLMs could act as a controller to manage existing AI models to solve complicated AI tasks.
We present HuggingGPT, an LLM-powered agent that connects various AI models in machine learning communities.
arXiv Detail & Related papers (2023-03-30T17:48:28Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.