AI in Software Engineering: A Survey on Project Management Applications
- URL: http://arxiv.org/abs/2307.15224v1
- Date: Thu, 27 Jul 2023 23:02:24 GMT
- Title: AI in Software Engineering: A Survey on Project Management Applications
- Authors: Talia Crawford, Scott Duong, Richard Fueston, Ayorinde Lawani, Samuel
Owoade, Abel Uzoka, Reza M. Parizi, Abbas Yazdinejad
- Abstract summary: Machine Learning (ML) employs algorithms that undergo training on data sets, enabling them to carry out specific tasks autonomously.
AI holds immense potential in the field of software engineering, particularly in project management and planning.
- Score: 3.156791351998142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) refers to the intelligence demonstrated by
machines, and within the realm of AI, Machine Learning (ML) stands as a notable
subset. ML employs algorithms that undergo training on data sets, enabling them
to carry out specific tasks autonomously. Notably, AI holds immense potential
in the field of software engineering, particularly in project management and
planning. In this literature survey, we explore the use of AI in Software
Engineering and summarize previous works in this area. We first review eleven
different publications related to this subject, then compare the surveyed
works. We then comment on the possible challenges present in the utilization of
AI in software engineering and suggest possible further research avenues and
the ways in which AI could evolve with software engineering in the future.
Related papers
- Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
We present insights from SE researchers and practitioners on challenges and solutions regarding diversity and inclusion in SE.
We share potential utopian and dystopian visions of the future and provide future research directions and implications for academia and industry.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - The application of artificial intelligence in software engineering: a
review challenging conventional wisdom [0.9651131604396904]
This survey chapter is a review of the most commonplace methods of AI applied to software engineering.
The review covers methods between years 1975-2017, for the requirements phase, 46 major AI-driven methods are found.
The purpose of this chapter is to answer the following questions: is there sufficient intelligence in the SE lifecycle?
arXiv Detail & Related papers (2021-08-03T15:59:59Z) - A Classification of Artificial Intelligence Systems for Mathematics
Education [3.718476964451589]
This chapter provides an overview of the different Artificial Intelligence (AI) systems that are being used in digital tools for Mathematics Education (ME)
It is aimed at researchers in AI and Machine Learning (ML), for whom we shed some light on the specific technologies that are being used in educational applications.
arXiv Detail & Related papers (2021-07-13T12:09:10Z) - Software Engineering for AI-Based Systems: A Survey [8.550158373713906]
There is limited synthesized knowledge on Software Engineering approaches for building, operating, and maintaining AI-based systems.
SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018.
The most studied properties of AI-based systems are dependability and safety.
arXiv Detail & Related papers (2021-05-05T11:22:08Z) - Explainable AI for Software Engineering [12.552048647904591]
We first highlight the need for explainable AI in software engineering.
Then, we summarize three successful case studies on how explainable AI techniques can be used to address the aforementioned challenges.
arXiv Detail & Related papers (2020-12-03T00:42:29Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.