論文の概要: Geometric Kolmogorov-Arnold Superposition Theorem
- arxiv url: http://arxiv.org/abs/2502.16664v1
- Date: Sun, 23 Feb 2025 17:47:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:53:14.736463
- Title: Geometric Kolmogorov-Arnold Superposition Theorem
- Title(参考訳): Geometric Kolmogorov-Arnold Superposition Theorem
- Authors: Francesco Alesiani, Takashi Maruyama, Henrik Christiansen, Viktor Zaverkin,
- Abstract要約: コルモゴロフ・アルノルドネットワーク(KAN)は、コルモゴロフ・アルノルド理論(KAT)を実装するための訓練可能なモデルとして導入された。
我々は,KAT と Kan の新たな拡張法を提案し,$O(n)$グループアクションに等分散と不変性を導入し,物理的システムの正確かつ効率的なモデリングを可能にする。
- 参考スコア(独自算出の注目度): 9.373581450684233
- License:
- Abstract: The Kolmogorov-Arnold Theorem (KAT), or more generally, the Kolmogorov Superposition Theorem (KST), establishes that any non-linear multivariate function can be exactly represented as a finite superposition of non-linear univariate functions. Unlike the universal approximation theorem, which provides only an approximate representation without guaranteeing a fixed network size, KST offers a theoretically exact decomposition. The Kolmogorov-Arnold Network (KAN) was introduced as a trainable model to implement KAT, and recent advancements have adapted KAN using concepts from modern neural networks. However, KAN struggles to effectively model physical systems that require inherent equivariance or invariance to $E(3)$ transformations, a key property for many scientific and engineering applications. In this work, we propose a novel extension of KAT and KAN to incorporate equivariance and invariance over $O(n)$ group actions, enabling accurate and efficient modeling of these systems. Our approach provides a unified approach that bridges the gap between mathematical theory and practical architectures for physical systems, expanding the applicability of KAN to a broader class of problems.
- Abstract(参考訳): Kolmogorov-Arnold Theorem (KAT) あるいはより一般的には、KST (Kolmogorov Superposition Theorem) は、任意の非線型多変数函数が、正確には非線型単変数函数の有限重ね合わせとして表すことができることを証明している。
固定されたネットワークサイズを保証せずに近似表現のみを提供する普遍近似定理とは異なり、KSTは理論的に正確な分解を与える。
Kolmogorov-Arnold Network (KAN)は、KATを実装するためのトレーニング可能なモデルとして導入された。
しかし、カンは、多くの科学的・工学的応用にとって重要な性質である$E(3)$変換に固有の等値性や不変性を必要とする物理系を効果的にモデル化するのに苦労している。
そこで本研究では,KAT と Kan の新たな拡張法を提案し,$O(n)$群の作用に等分散と不変性を組み込むことにより,これらの系の高精度かつ効率的なモデリングを可能にする。
我々のアプローチは、数学的理論と物理系の実践的アーキテクチャのギャップを埋める統一的なアプローチを提供し、KANの適用性をより広範な問題に拡張する。
関連論文リスト
- HKAN: Hierarchical Kolmogorov-Arnold Network without Backpropagation [1.3812010983144802]
階層型コルモゴロフ・アルノルドネットワーク(Hierarchical Kolmogorov-Arnold Network、HKAN)は、最近提案されたコルモゴロフ・アルノルドネットワーク(KAN)に代わる新しいネットワークアーキテクチャである。
HKANはランダムな学習手法を採用し、基底関数のパラメータを固定し、最小二乗回帰を用いて線形集約を最適化する。
実証的な結果から、HKANは様々な回帰タスクにまたがって、カンに対して優れた精度と安定性を提供すると同時に、変数の重要性に関する洞察を提供する。
論文 参考訳(メタデータ) (2025-01-30T08:44:54Z) - Nested Annealed Training Scheme for Generative Adversarial Networks [54.70743279423088]
本稿では、厳密な数学的理論的枠組みである複合機能段階GAN(CFG)に焦点を当てる。
CFGモデルとスコアベースモデルとの理論的関係を明らかにする。
CFG判別器の学習目的は最適D(x)を求めることと等価であることがわかった。
論文 参考訳(メタデータ) (2025-01-20T07:44:09Z) - Incorporating Arbitrary Matrix Group Equivariance into KANs [69.30866522377694]
我々は任意の行列群同変をkanに組み込む方法であるEquivariant Kolmogorov-Arnold Networks (EKAN)を提案する。
EKANは、粒子散乱や3体問題といった対称性に関連したタスクにおいて、より小さなデータセットやより少ないパラメータで高い精度を達成する。
論文 参考訳(メタデータ) (2024-10-01T06:34:58Z) - Distribution learning via neural differential equations: a nonparametric
statistical perspective [1.4436965372953483]
この研究は、確率変換によって訓練されたODEモデルによる分布学習のための最初の一般統計収束解析を確立する。
後者はクラス $mathcal F$ の$C1$-metric entropy で定量化できることを示す。
次に、この一般フレームワークを$Ck$-smoothターゲット密度の設定に適用し、関連する2つの速度場クラスに対する最小最適収束率を$mathcal F$:$Ck$関数とニューラルネットワークに設定する。
論文 参考訳(メタデータ) (2023-09-03T00:21:37Z) - Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and
Group Convolution [90.67482899242093]
近年, 入力の回転と変換において等価な3次元データに対して, ニューラルネットワークを設計するための幅広い手法が提案されている。
両手法とその等価性を詳細に解析し,その2つの構成をマルチビュー畳み込みネットワークに関連付ける。
また、同値原理から新しいTFN非線形性を導出し、実用的なベンチマークデータセット上でテストする。
論文 参考訳(メタデータ) (2022-11-29T03:42:11Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible Neural Network (INN) は、設計によって可逆性を持つニューラルネットワークアーキテクチャである。
その可逆性とヤコビアンのトラクタビリティのおかげで、IGNは確率的モデリング、生成的モデリング、表現的学習など、さまざまな機械学習応用がある。
論文 参考訳(メタデータ) (2022-04-15T10:45:26Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
フレーム平均化(FA)は、既知の(バックボーン)アーキテクチャを新しい対称性タイプに不変あるいは同変に適応するためのフレームワークである。
FAモデルが最大表現力を持つことを示す。
我々は,新しいユニバーサルグラフニューラルネット(GNN),ユニバーサルユークリッド運動不変点クラウドネットワーク,およびユークリッド運動不変メッセージパッシング(MP)GNNを提案する。
論文 参考訳(メタデータ) (2021-10-07T11:05:23Z) - Universal Approximation Property of Neural Ordinary Differential
Equations [19.861764482790544]
我々は NODE が一定の条件下で連続写像に対して$Lp$-universal approximator を形成することを示す。
また、それらのより強い近似特性、すなわち、大きな微分同相類を近似する$sup$-ユニバーサリティを示す。
論文 参考訳(メタデータ) (2020-12-04T05:53:21Z) - Deep Conditional Transformation Models [0.0]
特徴集合上の結果変数条件の累積分布関数(CDF)を学習することは依然として困難である。
条件変換モデルは、条件付きCDFの大規模なクラスをモデル化できる半パラメトリックなアプローチを提供する。
我々は,新しいネットワークアーキテクチャを提案し,異なるモデル定義の詳細を提供し,適切な制約を導出する。
論文 参考訳(メタデータ) (2020-10-15T16:25:45Z) - Collegial Ensembles [11.64359837358763]
我々は,群畳み込みと対角線ブロックを用いた実用的アーキテクチャにおいて,コレギアルアンサンブルを効率的に実装可能であることを示す。
また、一つのモデルをトレーニングすることなく、最適なグループ畳み込みモジュールを解析的に導き出すために、我々のフレームワークをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2020-06-13T16:40:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。