Watch Out E-scooter Coming Through: Multimodal Sensing of Mixed Traffic Use and Conflicts Through Riders Ego-centric Views
- URL: http://arxiv.org/abs/2502.16755v1
- Date: Mon, 24 Feb 2025 00:16:18 GMT
- Title: Watch Out E-scooter Coming Through: Multimodal Sensing of Mixed Traffic Use and Conflicts Through Riders Ego-centric Views
- Authors: Hiruni Nuwanthika Kegalle, Danula Hettiachchi, Jeffrey Chan, Mark Sanderson, Flora D. Salim,
- Abstract summary: This study investigated the rider behaviour through a naturalistic study with 23 participants equipped with a bike computer.<n>We analysed gaze movements, speed, and video feeds across three transport infrastructure types: a pedestrian-shared path, a cycle lane and a roadway.<n>Our findings reveal unique challenges e-scooter riders face, including difficulty keeping up with cyclists and motor vehicles.
- Score: 27.40067154809732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: E-scooters are becoming a popular means of urban transportation. However, this increased popularity brings challenges, such as road accidents and conflicts when sharing space with traditional transport modes. An in-depth understanding of e-scooter rider behaviour is crucial for ensuring rider safety, guiding infrastructure planning, and enforcing traffic rules. This study investigated the rider behaviour through a naturalistic study with 23 participants equipped with a bike computer, eye-tracking glasses and cameras. They followed a pre-determined route, enabling multi-modal data collection. We analysed and compared gaze movements, speed, and video feeds across three transport infrastructure types: a pedestrian-shared path, a cycle lane and a roadway. Our findings reveal unique challenges e-scooter riders face, including difficulty keeping up with cyclists and motor vehicles due to speed limits on shared e-scooters, risks in signalling turns due to control lose, and limited acceptance in mixed-use spaces. The cycle lane showed the highest average speed, the least speed change points, and the least head movements, supporting its suitability as dedicated infrastructure for e-scooters. These findings are facilitated through multimodal sensing and analysing the e-scooter riders' ego-centric view, which show the efficacy of our method in discovering the behavioural dynamics of the riders in the wild. Our study highlights the critical need to align infrastructure with user behaviour to improve safety and emphasises the importance of targeted safety measures and regulations, especially when e-scooter riders share spaces with pedestrians or motor vehicles. The dataset and analysis code are available at https://github.com/HiruniNuwanthika/Electric-Scooter-Riders-Multi-Modal-Data-Analysis.git.
Related papers
- GARLIC: GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [81.82487256783674]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.<n>This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Impact of Different Infrastructures and Traffic Scenarios on Behavioral and Physiological Responses of E-scooter Users [9.218359701264797]
This paper aims to study the responses of e-scooter users under different infrastructures and scenarios through naturalistic riding experiments.
The findings indicate that different speed profiles, infrastructural elements, and traffic scenarios significantly influence riding dynamics.
The study underscores the importance of considering infrastructure design and its influence on e-scooter safety.
arXiv Detail & Related papers (2024-05-05T19:55:46Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Risk assessment and mitigation of e-scooter crashes with naturalistic
driving data [2.862606936691229]
This paper presents a naturalistic driving study with a focus on e-scooter and vehicle encounters.
The goal is to quantitatively measure the behaviors of e-scooter riders in different encounters to help facilitate crash scenario modeling.
arXiv Detail & Related papers (2022-12-24T05:28:31Z) - A Wearable Data Collection System for Studying Micro-Level E-Scooter
Behavior in Naturalistic Road Environment [3.5466525046297264]
This paper proposes a wearable data collection system for investigating the micro-level e-Scooter motion behavior in a Naturalistic road environment.
An e-Scooter-based data acquisition system has been developed by integrating LiDAR, cameras, and GPS using the robot operating system (ROS)
arXiv Detail & Related papers (2022-12-22T18:58:54Z) - E-Scooter Rider Detection and Classification in Dense Urban Environments [5.606792370296115]
This research introduces a novel benchmark for partially occluded e-scooter rider detection to facilitate the objective characterization of detection models.
A novel, occlusion-aware method of e-scooter rider detection is presented that achieves a 15.93% improvement in detection performance over the current state of the art.
arXiv Detail & Related papers (2022-05-20T13:50:36Z) - Detecting, Tracking and Counting Motorcycle Rider Traffic Violations on
Unconstrained Roads [27.351236436457445]
In many Asian countries with unconstrained road traffic conditions, driving violations such as not wearing helmets and triple-riding are a significant source of fatalities involving motorcycles.
We propose an approach for detecting, tracking, and counting motorcycle riding violations in videos taken from a vehicle-mounted dashboard camera.
arXiv Detail & Related papers (2022-04-18T15:17:40Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.