Impact of Different Infrastructures and Traffic Scenarios on Behavioral and Physiological Responses of E-scooter Users
- URL: http://arxiv.org/abs/2407.10310v1
- Date: Sun, 5 May 2024 19:55:46 GMT
- Title: Impact of Different Infrastructures and Traffic Scenarios on Behavioral and Physiological Responses of E-scooter Users
- Authors: Dong Chen, Arman Hosseini, Arik Smith, David Xiang, Arsalan Heydarian, Omid Shoghli, Bradford Campbell,
- Abstract summary: This paper aims to study the responses of e-scooter users under different infrastructures and scenarios through naturalistic riding experiments.
The findings indicate that different speed profiles, infrastructural elements, and traffic scenarios significantly influence riding dynamics.
The study underscores the importance of considering infrastructure design and its influence on e-scooter safety.
- Score: 9.218359701264797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As micromobility devices such as e-scooters gain global popularity, emergency departments around the world have observed a rising trend in related injuries. However, the majority of current research on e-scooter safety relies heavily on surveys, news reports, and data from vendors, with a noticeable scarcity of naturalistic studies examining the effects of riders' behaviors and physiological responses. Therefore, this paper aims to study the responses of e-scooter users under different infrastructures and scenarios through naturalistic riding experiments. The findings indicate that different speed profiles, infrastructural elements, and traffic scenarios significantly influence riding dynamics. The experimental results also reveal that e-scooters face amplified safety challenges when navigating through areas with speed variations and without dedicated riding spaces. The study underscores the importance of considering infrastructure design and its influence on e-scooter safety, providing insights that could inform future urban planning and policy-making to enhance the safety of these increasingly popular vehicles.
Related papers
- Watch Out E-scooter Coming Through: Multimodal Sensing of Mixed Traffic Use and Conflicts Through Riders Ego-centric Views [27.40067154809732]
This study investigated the rider behaviour through a naturalistic study with 23 participants equipped with a bike computer.
We analysed gaze movements, speed, and video feeds across three transport infrastructure types: a pedestrian-shared path, a cycle lane and a roadway.
Our findings reveal unique challenges e-scooter riders face, including difficulty keeping up with cyclists and motor vehicles.
arXiv Detail & Related papers (2025-02-24T00:16:18Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Instantaneous Perception of Moving Objects in 3D [86.38144604783207]
The perception of 3D motion of surrounding traffic participants is crucial for driving safety.
We propose to leverage local occupancy completion of object point clouds to densify the shape cue, and mitigate the impact of swimming artifacts.
Extensive experiments demonstrate superior performance compared to standard 3D motion estimation approaches.
arXiv Detail & Related papers (2024-05-05T01:07:24Z) - A Scoping Review of Energy-Efficient Driving Behaviors and Applied
State-of-the-Art AI Methods [2.765388013062202]
There is no comprehensive investigation into energy-efficient driving behaviors and strategies.
Many state-of-the-art AI models have been applied for the analysis of eco-friendly driving styles, but no overview is available.
This paper conducts a thorough literature review on ecological driving behaviors and styles and analyzes the driving factors influencing energy consumption.
arXiv Detail & Related papers (2024-03-04T13:57:34Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - Using Visual and Vehicular Sensors for Driver Behavior Analysis: A
Survey [0.0]
Risky drivers account for 70% of fatal accidents in the United States.
This paper examines the various techniques used to analyze driver behavior using visual and vehicular data.
arXiv Detail & Related papers (2023-08-25T14:33:59Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
Semi-cooperative behaviors are intrinsic properties of human drivers and should be considered for autonomous driving.
New autonomous planners can consider the social value orientation (SVO) of human drivers to generate socially-compliant trajectories.
We present study of implicit semi-cooperative driving where agents deploy a game-theoretic version of iterative best response.
arXiv Detail & Related papers (2023-04-23T16:01:36Z) - Using Connected Vehicle Trajectory Data to Evaluate the Effects of
Speeding [0.0]
Various transportation agencies have proposed speed management strategies to reduce the amount of speeding on arterials.
While there have been various studies done on the analysis of speeding proportions above the speed limit, few studies have considered the effect on the individual's journey.
This study aims to explore the effects of various roadway features an individual experiences for a given journey on speeding proportions.
arXiv Detail & Related papers (2023-03-29T02:17:28Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Behavioral Intention Prediction in Driving Scenes: A Survey [70.53285924851767]
Behavioral Intention Prediction (BIP) simulates a human consideration process and fulfills the early prediction of specific behaviors.
This work provides a comprehensive review of BIP from the available datasets, key factors and challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications.
arXiv Detail & Related papers (2022-11-01T11:07:37Z) - E-Scooter Rider Detection and Classification in Dense Urban Environments [5.606792370296115]
This research introduces a novel benchmark for partially occluded e-scooter rider detection to facilitate the objective characterization of detection models.
A novel, occlusion-aware method of e-scooter rider detection is presented that achieves a 15.93% improvement in detection performance over the current state of the art.
arXiv Detail & Related papers (2022-05-20T13:50:36Z) - Predicting the impact of urban change in pedestrian and road safety [0.0]
Recent work has shown that Convolutional Neural Networks are able to accurately predict accident rates exploiting Street View imagery.
We detail how to automatically predict the impact (increase or decrease) of urban interventions on accident incidence.
Considering the transportation network substrates (sidewalk and road networks) and their demand, we integrate these results to a complex network framework.
arXiv Detail & Related papers (2022-02-03T10:37:51Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z) - Where are the Dangerous Intersections for Pedestrians and Cyclists: A
Colocation-Based Approach [3.8355893560092893]
Pedestrians and cyclists are at greater risk for being killed in a crash than other road users.
Finding ways to minimize problematic street environments is critical.
arXiv Detail & Related papers (2020-05-30T13:54:43Z) - Decoding pedestrian and automated vehicle interactions using immersive
virtual reality and interpretable deep learning [6.982614422666432]
This study investigates pedestrian crossing behaviour, as an important element of urban dynamics that is expected to be affected by the presence of automated vehicles.
Pedestrian wait time behaviour is then analyzed using a data-driven Cox Proportional Hazards (CPH) model.
Results show that the presence of automated vehicles on roads, wider lane widths, high density on roads, limited sight distance, and lack of walking habits are the main contributing factors to longer wait times.
arXiv Detail & Related papers (2020-02-18T01:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.