論文の概要: Exploring Causes and Mitigation of Hallucinations in Large Vision Language Models
- arxiv url: http://arxiv.org/abs/2502.16842v1
- Date: Mon, 24 Feb 2025 05:00:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 22:36:56.412148
- Title: Exploring Causes and Mitigation of Hallucinations in Large Vision Language Models
- Title(参考訳): 大規模視覚言語モデルにおける幻覚の原因探索と緩和
- Authors: Yaqi Sun, Kyohei Atarashi, Koh Takeuchi, Hisashi Kashima,
- Abstract要約: Large Vision-Language Models (LVLM)は、画像エンコーダとLarge Language Models (LLM)を統合し、マルチモーダル入力を処理し、複雑な視覚タスクを実行する。
それらはしばしば、既存のオブジェクトや属性を記述することによって幻覚を生じさせ、その信頼性を損なう。
本研究では、画像キャプションにおける幻覚パターンを分析し、生成過程における全てのトークンが画像入力の影響を受けないことを示す。
- 参考スコア(独自算出の注目度): 24.241691571850403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) integrate image encoders with Large Language Models (LLMs) to process multi-modal inputs and perform complex visual tasks. However, they often generate hallucinations by describing non-existent objects or attributes, compromising their reliability. This study analyzes hallucination patterns in image captioning, showing that not all tokens in the generation process are influenced by image input and that image dependency can serve as a useful signal for hallucination detection. To address this, we develop an automated pipeline to identify hallucinated objects and train a token-level classifier using hidden representations from parallel inference passes-with and without image input. Leveraging this classifier, we introduce a decoding strategy that effectively controls hallucination rates in image captioning at inference time.
- Abstract(参考訳): Large Vision-Language Models (LVLM)は、画像エンコーダとLarge Language Models (LLM)を統合し、マルチモーダル入力を処理し、複雑な視覚タスクを実行する。
しかし、それらはしばしば、既存のオブジェクトや属性を記述することによって幻覚を生じさせ、その信頼性を損なう。
本研究では、画像キャプションにおける幻覚パターンを分析し、生成過程における全てのトークンが画像入力の影響を受けていないこと、および、画像依存が幻覚検出に有用な信号であることを示す。
そこで我々は, 画像入力を伴わずに, 並列推論による隠れ表現を用いて, 幻覚的物体を識別し, トークンレベルの分類器を訓練する自動パイプラインを開発した。
この分類器を活用することで、推論時の画像キャプションにおける幻覚率を効果的に制御する復号戦略を導入する。
関連論文リスト
- Why and How LLMs Hallucinate: Connecting the Dots with Subsequence Associations [82.42811602081692]
本稿では,幻覚を体系的に追跡・理解するサブシーケンス・アソシエーション・フレームワークを提案する。
主要な洞察は、支配的な幻覚協会が忠実なものを上回るときに生じる幻覚である。
ランダムな入力コンテキストにおける幻覚の確率を解析することにより因果列を同定するトレースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-17T06:34:45Z) - PerturboLLaVA: Reducing Multimodal Hallucinations with Perturbative Visual Training [56.172959986096316]
本稿では,マルチモーダル大規模言語モデル(MLLM)における幻覚の課題を解決することを目的とする。
HalFscoreは言語グラフ上に構築された新しい計量であり、密度の高いキャプションの精度と完全性の両方を粒度レベルで評価するように設計されている。
PerturboLLaVAは、生成されたキャプションの忠実度を著しく改善し、マルチモーダル幻覚に対する既存のアプローチよりも優れている。
論文 参考訳(メタデータ) (2025-03-09T07:07:03Z) - Mitigating Hallucinations in Large Vision-Language Models by Adaptively Constraining Information Flow [32.039946174953236]
大きな視覚言語モデルは、人間の言語を通して視覚情報を理解する大きな可能性を示している。
それらは、物体の幻覚に苦しむ傾向があり、すなわち、生成された画像記述には、画像の中に存在しない物体が含まれている。
本稿では,幻覚雑音の導入による過信を軽減するため,変分情報ボトルネック(VIB)を提案する。
論文 参考訳(メタデータ) (2025-02-28T05:56:23Z) - Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
LVLM(Large Vision-Language Models)は、与えられた視覚入力と一致しない幻覚的テキスト応答を生成する傾向がある。
テキストから画像への生成モデルからのフィードバックをデコードプロセスに組み込んだ,新たなトレーニングフリーアルゴリズムである生成フィードバック付き自己修正デコード(DeGF)を導入する。
論文 参考訳(メタデータ) (2025-02-10T03:43:55Z) - Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models [57.58426038241812]
LVLM(Large Vision-Language Models)は、複雑なマルチモーダルタスクにおいて顕著な性能を示す。
これらのモデルは、画像から様々な視覚的実体を暗黙的に認識または推測する必要がある場合、まだ幻覚に悩まされている。
本稿では,視覚的質問応答(VQA)ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-29T23:56:01Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
LVLM(Large Vision-Language Models)はマルチモーダルタスク推論において顕著な機能を示す。
彼らはしばしば、幻覚として知られる視覚的内容が正確に反映されていないように思われる応答を生成する。
近年のアプローチでは、推論段階における復号化戦略を調整することで幻覚を緩和するための訓練不要な手法が導入されている。
textbfVisutextbfal textbfLayer Fustextbfion textbfD
論文 参考訳(メタデータ) (2024-11-24T13:42:02Z) - From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models [15.401221354325672]
大型視覚モデル(LVLM)における幻覚は、視覚入力に表示されない物体を生成するという重要な課題である。
最近の研究では、幻覚は視覚的な入力の理解の欠如に起因しているが、より根本的な問題は無視されている。
本稿では,LVLMの幻覚をアーキテクチャの観点から再検討し,視覚エンコーダ(機能抽出)とモーダルアライメントモジュール(機能デカップリング)の主な原因について検討する。
論文 参考訳(メタデータ) (2024-10-09T11:46:32Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
大規模ビジュアル言語モデル(LVLM)は、マルチモーダルデータの理解において、例外的な能力を示した。
彼らは必然的に幻覚に悩まされ、生成されたテキストと対応するイメージを切断する。
現在の視覚的コントラスト復号法のほとんどは、視覚的不確実性情報を導入して幻覚を緩和しようとするものである。
しかし、彼らは幻覚トークンを正確に誘導するのに苦労し、幻覚を緩和する効果を著しく制限した。
論文 参考訳(メタデータ) (2024-05-24T08:46:31Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - Seeing is Believing: Mitigating Hallucination in Large Vision-Language Models via CLIP-Guided Decoding [36.81476620057058]
LVLM(Large Vision-Language Models)は、物体の幻覚に影響を受けやすい。
現在のアプローチは、しばしばモデルのトークン可能性やその他の内部情報に依存する。
CLIP-Guided Decoding approach to reduce object hallucination at decoding time。
論文 参考訳(メタデータ) (2024-02-23T12:57:16Z) - Mitigating Open-Vocabulary Caption Hallucinations [33.960405731583656]
オープン語彙設定における画像キャプションにおける幻覚に対処する枠組みを提案する。
我々のフレームワークには、生成基盤モデルを利用してオープン語彙オブジェクト幻覚を評価する新しいベンチマークであるOpenCHAIRが含まれている。
閉じたオブジェクトリストを使わずにオープン語彙の幻覚を緩和するために,MOCHaを提案する。
論文 参考訳(メタデータ) (2023-12-06T17:28:03Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。