論文の概要: Mitigating Hallucinations in Large Vision-Language Models by Adaptively Constraining Information Flow
- arxiv url: http://arxiv.org/abs/2502.20750v1
- Date: Fri, 28 Feb 2025 05:56:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:42:37.929213
- Title: Mitigating Hallucinations in Large Vision-Language Models by Adaptively Constraining Information Flow
- Title(参考訳): 情報流の適応的制約による視覚・言語モデルにおける幻覚の緩和
- Authors: Jiaqi Bai, Hongcheng Guo, Zhongyuan Peng, Jian Yang, Zhoujun Li, Mohan Li, Zhihong Tian,
- Abstract要約: 大きな視覚言語モデルは、人間の言語を通して視覚情報を理解する大きな可能性を示している。
それらは、物体の幻覚に苦しむ傾向があり、すなわち、生成された画像記述には、画像の中に存在しない物体が含まれている。
本稿では,幻覚雑音の導入による過信を軽減するため,変分情報ボトルネック(VIB)を提案する。
- 参考スコア(独自算出の注目度): 32.039946174953236
- License:
- Abstract: Large vision-language models show tremendous potential in understanding visual information through human languages. However, they are prone to suffer from object hallucination, i.e., the generated image descriptions contain objects that do not exist in the image. In this paper, we reveal that object hallucination can be attributed to overconfidence in irrelevant visual features when soft visual tokens map to the LLM's word embedding space. Specifically, by figuring out the semantic similarity between visual tokens and LLM's word embedding, we observe that the smoothness of similarity distribution strongly correlates with the emergence of object hallucinations. To mitigate hallucinations, we propose using the Variational Information Bottleneck (VIB) to alleviate overconfidence by introducing stochastic noise, facilitating the constraining of irrelevant information. Furthermore, we propose an entropy-based noise-controlling strategy to enable the injected noise to be adaptively constrained regarding the smoothness of the similarity distribution. We adapt the proposed AdaVIB across distinct model architectures. Experimental results demonstrate that the proposed AdaVIB mitigates object hallucinations by effectively alleviating the overconfidence in irrelevant visual features, with consistent improvements on two object hallucination benchmarks.
- Abstract(参考訳): 大きな視覚言語モデルは、人間の言語を通して視覚情報を理解する大きな可能性を示している。
しかし、それらは物体の幻覚に苦しむ傾向にあり、すなわち、生成された画像記述には画像に存在しない物体が含まれている。
本稿では,LLMの単語埋め込み空間にソフトな視覚トークンがマッピングされた場合,物体の幻覚は無関係な視覚的特徴の過信に起因する可能性があることを示す。
具体的には,視覚的トークンとLLMの単語埋め込みのセマンティックな類似性を明らかにすることにより,類似度分布の滑らかさが物体幻覚の出現と強く相関していることが観察された。
幻覚を緩和するために,確率的雑音を導入し,無関係な情報の制約を緩和し,過信を緩和するために変分情報ボトルネック(VIB)を提案する。
さらに,類似度分布の滑らかさに関して,入射雑音を適応的に抑制するエントロピーに基づくノイズ制御手法を提案する。
提案したAdaVIBを異なるモデルアーキテクチャに適用する。
実験結果から,提案したAdaVIBは視覚的特徴の過信を効果的に軽減し,物体幻覚を緩和し,二つの物体幻覚ベンチマークに一貫した改善を施すことが示されている。
関連論文リスト
- Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
大規模視覚言語モデル(LVLM)は、下流のマルチモーダルタスクに対する視覚言語理解において顕著な能力を示している。
LVLMは、複雑な生成タスクにおいて幻覚を生じさせ、視覚入力と生成されたコンテンツの間に矛盾が生じている。
本研究では,LVLMにおける幻覚を無訓練で緩和するIMCCD法を提案する。
論文 参考訳(メタデータ) (2025-01-03T17:56:28Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
LVLM(Large Vision-Language Models)はマルチモーダルタスク推論において優れた性能を示す。
textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfDecoding (VaLiD)。
論文 参考訳(メタデータ) (2024-11-24T13:42:02Z) - CATCH: Complementary Adaptive Token-level Contrastive Decoding to Mitigate Hallucinations in LVLMs [74.36850397755572]
CATCHは、未解決のシナリオにおいて、きめ細かい特徴知覚と累積幻覚を減少させる視覚的欠陥に関連する問題に対処する。
これは、特定のデータや事前知識を必要とせず、様々な視覚的質問応答タスクに適用でき、追加のトレーニングを必要とせず、新しいタスクにしっかりと一般化する。
論文 参考訳(メタデータ) (2024-11-19T18:27:31Z) - From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models [15.401221354325672]
大型視覚モデル(LVLM)における幻覚は、視覚入力に表示されない物体を生成するという重要な課題である。
最近の研究では、幻覚は視覚的な入力の理解の欠如に起因しているが、より根本的な問題は無視されている。
本稿では,LVLMの幻覚をアーキテクチャの観点から再検討し,視覚エンコーダ(機能抽出)とモーダルアライメントモジュール(機能デカップリング)の主な原因について検討する。
論文 参考訳(メタデータ) (2024-10-09T11:46:32Z) - Interpreting and Editing Vision-Language Representations to Mitigate Hallucinations [15.035663040732798]
幻覚に対処するために視覚言語モデル(VLM)の内部表現について検討する。
我々は,VLMの内部画像表現を言語語彙に投影し,実物体の出力確率を幻覚的物体よりも高い信頼度で観測する。
モデルが潜在する表現を対象とする編集は、COCO2014データセットで最大25.7%の幻覚を減少させることができることを示す。
論文 参考訳(メタデータ) (2024-10-03T17:59:57Z) - HELPD: Mitigating Hallucination of LVLMs by Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding [36.360171373963716]
LVLM(Large Vision-Language Models)は多くの視覚言語タスクにおいて顕著な性能を示している。
これらのモデルはまだマルチモーダル幻覚に悩まされており、それは画像に反するオブジェクトやコンテンツの生成を意味する。
本稿では、この問題に対処するために、視力強化されたペナルティ復号法(HELPD)を用いた階層的フィードバック学習を提案する。
論文 参考訳(メタデータ) (2024-09-30T15:52:05Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
大規模ビジュアル言語モデル(LVLM)は、マルチモーダルデータの理解において、例外的な能力を示した。
彼らは必然的に幻覚に悩まされ、生成されたテキストと対応するイメージを切断する。
現在の視覚的コントラスト復号法のほとんどは、視覚的不確実性情報を導入して幻覚を緩和しようとするものである。
しかし、彼らは幻覚トークンを正確に誘導するのに苦労し、幻覚を緩和する効果を著しく制限した。
論文 参考訳(メタデータ) (2024-05-24T08:46:31Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
マルチモーダル大規模言語モデル(MLLM)は、自然言語と視覚情報を効率的に統合し、マルチモーダルタスクを処理できることが示されている。
しかし、MLLMは幻覚の基本的な限界に直面しており、誤った情報や偽情報を生成する傾向がある。
本稿では,MLLMにおける幻覚を表現学習の新たな視点から論じる。
論文 参考訳(メタデータ) (2023-12-12T04:05:15Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
本稿では,オリジナルおよび歪曲された視覚入力から出力分布を対比する,シンプルでトレーニングのないVisual Contrastive Decoding(VCD)を紹介する。
提案したVCDは, 対象幻覚の2つの重要な原因である, 統計的偏見と単調な先行性に対する信頼度を効果的に低減する。
実験の結果,付加的なトレーニングや外部ツールの使用がなければ,異なるLVLMファミリーにおける物体幻覚の問題を著しく軽減できることがわかった。
論文 参考訳(メタデータ) (2023-11-28T16:26:35Z) - Plausible May Not Be Faithful: Probing Object Hallucination in
Vision-Language Pre-training [66.0036211069513]
大規模視覚言語事前学習モデルは、テキストを生成する際に、存在しない視覚オブジェクトを幻覚させる傾向がある。
標準メトリクスでより良いスコアを得るモデルは、オブジェクトをより頻繁に幻覚させる可能性があることを示す。
驚いたことに、パッチベースの機能が最も良く、より小さなパッチ解決は、オブジェクト幻覚の非自明な減少をもたらす。
論文 参考訳(メタデータ) (2022-10-14T10:27:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。