Active Learning for Conditional Inverse Design with Crystal Generation and Foundation Atomic Models
- URL: http://arxiv.org/abs/2502.16984v1
- Date: Mon, 24 Feb 2025 09:15:38 GMT
- Title: Active Learning for Conditional Inverse Design with Crystal Generation and Foundation Atomic Models
- Authors: Zhuoyuan Li, Siyu Liu, Beilin Ye, David J. Srolovitz, Tongqi Wen,
- Abstract summary: We present an active learning framework that combines crystal generation models and foundation atomic models to enhance the accuracy and efficiency of inverse design.<n>Our framework is general to accommodate different crystal generation and foundation atomic models, and establishes a scalable approach for AI-driven materials discovery.
- Score: 2.8408587358426725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is transforming materials science, enabling both theoretical advancements and accelerated materials discovery. Recent progress in crystal generation models, which design crystal structures for targeted properties, and foundation atomic models (FAMs), which capture interatomic interactions across the periodic table, has significantly improved inverse materials design. However, an efficient integration of these two approaches remains an open challenge. Here, we present an active learning framework that combines crystal generation models and foundation atomic models to enhance the accuracy and efficiency of inverse design. As a case study, we employ Con-CDVAE to generate candidate crystal structures and MACE-MP-0 FAM as one of the high-throughput screeners for bulk modulus evaluation. Through iterative active learning, we demonstrate that Con-CDVAE progressively improves its accuracy in generating crystals with target properties, highlighting the effectiveness of a property-driven fine-tuning process. Our framework is general to accommodate different crystal generation and foundation atomic models, and establishes a scalable approach for AI-driven materials discovery. By bridging generative modeling with atomic-scale simulations, this work paves the way for more accurate and efficient inverse materials design.
Related papers
- CrystalFormer-RL: Reinforcement Fine-Tuning for Materials Design [2.290956583394892]
We explore the applications of reinforcement fine-tuning to the autoregressive transformer-based materials generative model CrystalFormer.
By optimizing reward signals, fine-tuning infuses knowledge from discriminative models into generative models.
The resulting model, CrystalFormer-RL, shows enhanced stability in generated crystals and successfully discovers crystals with desirable yet conflicting material properties.
arXiv Detail & Related papers (2025-04-03T07:59:30Z) - UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion [61.690978792873196]
Existing approaches rely on either autoregressive sequence models or diffusion models.
We propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models.
We validate the effectiveness of UniGenX on material and small molecule generation tasks.
arXiv Detail & Related papers (2025-03-09T16:43:07Z) - Inverse Materials Design by Large Language Model-Assisted Generative Framework [35.04390544440238]
AlloyGAN is a framework that integrates Large Language Model (LLM)-assisted text mining with Conditional Generative Adversarial Networks (CGANs)
For metallic glasses, the framework predicts thermodynamic properties with discrepancies of less than 8% from experiments.
By bridging generative AI with domain knowledge, AlloyGAN offers a scalable approach to accelerate the discovery of materials with tailored properties.
arXiv Detail & Related papers (2025-02-25T11:52:59Z) - Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Generative Inverse Design of Crystal Structures via Diffusion Models with Transformers [1.2289361708127877]
New inorganic materials with promising properties pose a critical challenge, both scientifically and for industrial applications.
Discovery of new inorganic materials with promising properties poses a critical challenge, both scientifically and for industrial applications.
In this study, we explore a new type of diffusion model for the generative inverse design of crystal structures, with a backbone based on a Transformer architecture.
arXiv Detail & Related papers (2024-06-13T16:03:15Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science.
We show that crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention.
We propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer.
arXiv Detail & Related papers (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
This work aims at the generation of new crystal structures with desired properties, such as chemical stability and specified chemical composition.
The novelty of the presented approach resides in the fact that the lattice of the crystal cell is not fixed.
A multigraph crystal representation is introduced that respects symmetry constraints, yielding computational advantages.
arXiv Detail & Related papers (2023-10-16T02:53:24Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
We introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials.
In this paper, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench.
The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
arXiv Detail & Related papers (2023-10-07T21:36:55Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.