論文の概要: A Pragmatic Note on Evaluating Generative Models with Fréchet Inception Distance for Retinal Image Synthesis
- arxiv url: http://arxiv.org/abs/2502.17160v1
- Date: Mon, 24 Feb 2025 13:54:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:56:43.411940
- Title: A Pragmatic Note on Evaluating Generative Models with Fréchet Inception Distance for Retinal Image Synthesis
- Title(参考訳): 網膜画像合成のためのフレシェ開始距離を持つ生成モデルの評価に関する実用的ノート
- Authors: Yuli Wu, Fucheng Liu, Rüveyda Yilmaz, Henning Konermann, Peter Walter, Johannes Stegmaier,
- Abstract要約: Fr'echet Inception Distance (FID)はImageNet Pretrained Inception-v3ネットワークで計算され、生成モデルの最先端評価指標として広く利用されている。
本稿では,FIDとその関連指標がタスク固有の評価目標と不一致であるカラーベース撮影や光コヒーレンストモグラフィなどの網膜画像モダリティの症例について検討する。
- 参考スコア(独自算出の注目度): 1.2274782635747272
- License:
- Abstract: Fr\'echet Inception Distance (FID), computed with an ImageNet pretrained Inception-v3 network, is widely used as a state-of-the-art evaluation metric for generative models. It assumes that feature vectors from Inception-v3 follow a multivariate Gaussian distribution and calculates the 2-Wasserstein distance based on their means and covariances. While FID effectively measures how closely synthetic data match real data in many image synthesis tasks, the primary goal in biomedical generative models is often to enrich training datasets ideally with corresponding annotations. For this purpose, the gold standard for evaluating generative models is to incorporate synthetic data into downstream task training, such as classification and segmentation, to pragmatically assess its performance. In this paper, we examine cases from retinal imaging modalities, including color fundus photography and optical coherence tomography, where FID and its related metrics misalign with task-specific evaluation goals in classification and segmentation. We highlight the limitations of using various metrics, represented by FID and its variants, as evaluation criteria for these applications and address their potential caveats in broader biomedical imaging modalities and downstream tasks.
- Abstract(参考訳): Fr\'echet Inception Distance (FID)はImageNet Pretrained Inception-v3ネットワークで計算され、生成モデルの最先端評価指標として広く利用されている。
Inception-v3 の特徴ベクトルは多変量ガウス分布に従い、それらの手段と共分散に基づいて 2-ワッサーシュタイン距離を計算すると仮定する。
FIDは、多くの画像合成タスクにおいて、実際のデータとどのように密に合成するかを効果的に測定するが、バイオメディカル生成モデルの第一の目的は、しばしば、対応するアノテーションでトレーニングデータセットを理想的に強化することである。
この目的のために、生成モデルを評価するための金の基準は、合成データを分類やセグメンテーションなどの下流タスク訓練に組み込んで、その性能を実用的に評価することである。
本稿では, FIDとそれに関連する指標が, 分類・分節におけるタスク固有の評価目標と不一致である場合, カラー基礎撮影や光コヒーレンス断層撮影などの網膜画像モダリティの症例について検討する。
FIDとその変異体で表される様々な指標をこれらの応用の評価基準として使用することの限界を強調し、より広いバイオメディカルイメージングと下流タスクにおける潜在的な注意事項に対処する。
関連論文リスト
- Analyzing the Feature Extractor Networks for Face Image Synthesis [0.0]
本研究では,FID,KID,Precision/Recallといったさまざまな指標を考慮した多様な特徴抽出器(InceptionV3,CLIP,DINOv2,ArcFace)の挙動について検討した。
実験には、$L$正規化、抽出中のモデル注意、機能空間におけるドメイン分布など、機能に関する詳細な分析が含まれている。
論文 参考訳(メタデータ) (2024-06-04T09:41:40Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
本報告では,テキストや画像の生成モデルで発生するような分布のペア間の比較尺度であるMAUVEについて述べる。
我々は、MAUVEが人間の文章の分布と現代のニューラル言語モデルとのギャップを定量化できることを発見した。
我々は、MAUVEが既存のメトリクスと同等以上の画像の既知の特性を識別できることを視覚領域で実証する。
論文 参考訳(メタデータ) (2022-12-30T07:37:40Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and
GANs [0.5039813366558306]
本稿では,教師付きディープラーニング(DL)トレーニングの適用のためのラベル付きデータを生成する手法を提案する。
画像合成はラベル変形とラベルから画像への変換からなる。
心臓MRI画像のデータベースを多様化・拡張する手法として,このようなアプローチが有効であることを示す。
論文 参考訳(メタデータ) (2022-09-09T10:17:49Z) - Triple-View Feature Learning for Medical Image Segmentation [9.992387025633805]
TriSegNetは半教師付きセマンティックセグメンテーションフレームワークである。
ラベル付けされたデータの限られた量と、ラベル付けされていない大量のデータに基づいて、トリプルビューの特徴学習を使用する。
論文 参考訳(メタデータ) (2022-08-12T14:41:40Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
組織像解析のための教師なし領域適応のための新しい手法を提案する。
特徴空間に画像を埋め込むバックボーンと、ラベルで画像の監視信号をプロパゲートするグラフニューラルネットワーク層に基づいている。
実験では、4つの公開データセット上での最先端のパフォーマンスを評価する。
論文 参考訳(メタデータ) (2020-08-21T04:53:44Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
意味的セグメンテーション(意味的セグメンテーション)の課題に焦点をあてる。そこでは、注釈付き合成データが多用されるが、実際のデータへのアノテートは困難である。
視覚心理学に触発された最初の基準は、2つの画像領域間の地図が位相保存であることである。
第2の基準は、照明剤や撮像センサーの特性に関わらず、その画像に現れる環境統計、またはシーン内の規則を活用することを目的としている。
論文 参考訳(メタデータ) (2020-04-10T06:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。