論文の概要: Motion-Robust T2* Quantification from Gradient Echo MRI with Physics-Informed Deep Learning
- arxiv url: http://arxiv.org/abs/2502.17209v1
- Date: Mon, 24 Feb 2025 14:41:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:55:57.157318
- Title: Motion-Robust T2* Quantification from Gradient Echo MRI with Physics-Informed Deep Learning
- Title(参考訳): 物理インフォームドディープラーニングによる勾配エコーMRIからのモーションロバストT2*量子化
- Authors: Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Lina Felsner, Kilian Weiss, Christine Preibisch, Julia A. Schnabel,
- Abstract要約: 運動補正は高品質なT2*写像を得るのに不可欠である。
これまでに導入した物理インフォームド動作補正法であるPHIMOを拡張した。
- 参考スコア(独自算出の注目度): 2.6290476986603073
- License:
- Abstract: Purpose: T2* quantification from gradient echo magnetic resonance imaging is particularly affected by subject motion due to the high sensitivity to magnetic field inhomogeneities, which are influenced by motion and might cause signal loss. Thus, motion correction is crucial to obtain high-quality T2* maps. Methods: We extend our previously introduced learning-based physics-informed motion correction method, PHIMO, by utilizing acquisition knowledge to enhance the reconstruction performance for challenging motion patterns and increase PHIMO's robustness to varying strengths of magnetic field inhomogeneities across the brain. We perform comprehensive evaluations regarding motion detection accuracy and image quality for data with simulated and real motion. Results: Our extended version of PHIMO outperforms the learning-based baseline methods both qualitatively and quantitatively with respect to line detection and image quality. Moreover, PHIMO performs on-par with a conventional state-of-the-art motion correction method for T2* quantification from gradient echo MRI, which relies on redundant data acquisition. Conclusion: PHIMO's competitive motion correction performance, combined with a reduction in acquisition time by over 40% compared to the state-of-the-art method, make it a promising solution for motion-robust T2* quantification in research settings and clinical routine.
- Abstract(参考訳): 目的:勾配エコー磁気共鳴画像からのT2*定量化は、特に、運動の影響を受け、信号損失を引き起こす可能性のある磁場不均一性に対する高い感度により、被写体運動に影響される。
したがって、運動補正は高品質なT2*写像を得るのに不可欠である。
方法: これまでに導入した物理インフォームド動作補正法であるPHIMOを拡張し, 獲得知識を活用して, 動作パターンの挑戦に対する再構成性能を高め, 脳内の磁場不均一性の強度にPHIMOの堅牢性を高める。
シミュレーションおよび実動作によるデータに対する動き検出精度と画像品質に関する総合的な評価を行う。
結果:PHIMOの拡張版は,線検出や画像品質に関して,質的にも定量的にも,学習ベースライン法よりも優れていた。
さらに、PHIMOは、冗長なデータ取得に依存する勾配エコーMRIによるT2*定量化のための従来の最先端の動作補正手法をオンパーで実行している。
結論: PHIMOの競合動作補正性能は, 最先端法に比べて40%以上の取得時間短縮と相まって, 研究環境および臨床経過におけるT2*定量化の有望な解となる。
関連論文リスト
- Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging [10.618048010632728]
非剛性動作推定のためのローカル・オール・パス・アテンション・ネットワーク(LAPANet)と呼ばれる,自己教師型深層学習に基づく新しいフレームワークを提案する。
LAPANetは,種々のサンプリング軌跡と加速度速度で心運動推定を行った。
非剛性運動に対する高時間分解能(5ミリ秒未満)は、動的およびリアルタイムMRIアプリケーションにおける動きの検出、追跡、修正のための新しい道を開く。
論文 参考訳(メタデータ) (2024-10-24T15:19:59Z) - MAMOC: MRI Motion Correction via Masked Autoencoding [2.2553331475843343]
本稿では, 運動負荷MRI脳スキャンにおけるRAC(Retrospective Artifact Correction)の問題点に対処する新しい手法であるMAMOC(Masked Motion Correction)を提案する。
MAMOCは、マスク付き自己エンコーディング、転送学習、テストタイム予測を使用して、動きのアーティファクトを効率的に除去し、高忠実でネイティブなスキャンを生成する。
この研究は、公開データセット上の実際のモーションデータを用いてMRIスキャンにおける動作補正を初めて評価し、MAMOCが既存の動作補正法よりも優れた性能を達成することを示す。
論文 参考訳(メタデータ) (2024-05-23T14:01:22Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - JSMoCo: Joint Coil Sensitivity and Motion Correction in Parallel MRI
with a Self-Calibrating Score-Based Diffusion Model [3.3053426917821134]
アンダーサンプルMRI再構成のための動きパラメータとコイル感度マップを共同で推定する。
本手法は, 動きの影響を受けない, 疎サンプリングされたk空間データから, 高品質MRI画像の再構成を行うことができる。
論文 参考訳(メタデータ) (2023-10-14T17:11:25Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
本稿では,T1重み付き画像(T1WIs)を補助モダリティとして活用し,T2WIsの取得を高速化するエンド・ツー・エンドのディープラーニングフレームワークを提案する。
最適輸送(OT)を用いてT1WIを整列させてT2WIを合成し、クロスモーダル合成を行う。
再構成されたT2WIと合成されたT2WIがT2画像多様体に近づき、繰り返しが増加することを示す。
論文 参考訳(メタデータ) (2023-05-04T12:20:51Z) - Estimating Head Motion from MR-Images [0.0]
頭部運動は磁気共鳴画像(MRI)解析の完全な共同創設者である。
本稿では,T1重み付き(T1w),T2重み付き(T2w)およびFLAIR画像から直接,走査内頭部の動きを予測する深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T11:03:08Z) - DRIMET: Deep Registration for 3D Incompressible Motion Estimation in
Tagged-MRI with Application to the Tongue [11.485843032637439]
変形組織の詳細な動きを観察し定量化するために、タグ付き磁気共鳴イメージング(MRI)が何十年も使われてきた。
本稿では, タグ付きMRIのための非教師付き位相ベース3次元動作推定手法を提案する。
論文 参考訳(メタデータ) (2023-01-18T00:16:30Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。