Parkinson's Disease Detection from Resting State EEG using Multi-Head Graph Structure Learning with Gradient Weighted Graph Attention Explanations
- URL: http://arxiv.org/abs/2408.00906v1
- Date: Thu, 1 Aug 2024 20:54:33 GMT
- Title: Parkinson's Disease Detection from Resting State EEG using Multi-Head Graph Structure Learning with Gradient Weighted Graph Attention Explanations
- Authors: Christopher Neves, Yong Zeng, Yiming Xiao,
- Abstract summary: We propose a novel graph neural network (GNN) technique for explainable Parkinson's disease (PD) detection using resting state EEG.
We employ structured global convolutions with contrastive learning to better model complex features with limited data.
We developed and evaluated our method using the UC San Diego Parkinson's disease EEG dataset, and achieved 69.40% detection accuracy in subject-wise leave-one-out cross-validation.
- Score: 9.544065991313062
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Parkinson's disease (PD) is a debilitating neurodegenerative disease that has severe impacts on an individual's quality of life. Compared with structural and functional MRI-based biomarkers for the disease, electroencephalography (EEG) can provide more accessible alternatives for clinical insights. While deep learning (DL) techniques have provided excellent outcomes, many techniques fail to model spatial information and dynamic brain connectivity, and face challenges in robust feature learning, limited data sizes, and poor explainability. To address these issues, we proposed a novel graph neural network (GNN) technique for explainable PD detection using resting state EEG. Specifically, we employ structured global convolutions with contrastive learning to better model complex features with limited data, a novel multi-head graph structure learner to capture the non-Euclidean structure of EEG data, and a head-wise gradient-weighted graph attention explainer to offer neural connectivity insights. We developed and evaluated our method using the UC San Diego Parkinson's disease EEG dataset, and achieved 69.40% detection accuracy in subject-wise leave-one-out cross-validation while generating intuitive explanations for the learnt graph topology.
Related papers
- GAMMA-PD: Graph-based Analysis of Multi-Modal Motor Impairment Assessments in Parkinson's Disease [9.69595196614787]
This paper proposes GAMMA-PD, a novel heterogeneous hypergraph fusion framework for multi-modal clinical data analysis.
GAMMA-PD integrates imaging and non-imaging data into a "hypernetwork" (patient population graph) by preserving higher-order information.
We demonstrate gains in predicting motor impairment symptoms in Parkinson's disease.
arXiv Detail & Related papers (2024-10-01T15:51:33Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of
Alzheimer's Disease using EEG Data [9.601125513491835]
We propose a novel adaptive gated graph convolutional network (AGGCN) that can provide explainable predictions.
AGGCN adaptively learns graph structures by combining convolution-based node feature enhancement with a correlation-based measure of power spectral density similarity.
arXiv Detail & Related papers (2023-04-12T14:13:09Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Spatial Temporal Graph Convolution with Graph Structure Self-learning
for Early MCI Detection [9.11430195887347]
We propose a spatial temporal graph convolutional network with a novel graph structure self-learning mechanism for EMCI detection.
Results on the Alzheimer's Disease Neuroimaging Initiative database show that our method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-11T12:29:00Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
We propose low-resource medical dialogue generation to transfer the diagnostic experience from source diseases to target ones.
We also develop a Graph-Evolving Meta-Learning framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease.
arXiv Detail & Related papers (2020-12-22T13:20:23Z) - Attention-based Graph ResNet for Motor Intent Detection from Raw EEG
signals [8.775745069873558]
In previous studies, decoding electroencephalography (EEG) signals has not considered the topological relationship of EEG electrodes.
An attention-based graph residual network, a novel structure of Graph Convolutional Neural Network (GCN), was presented to detect human motor intents.
Deep residual learning with a full-attention architecture was introduced to address the degradation problem concerning deeper networks in raw EEG motor imagery.
arXiv Detail & Related papers (2020-06-25T09:29:48Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.