論文の概要: Step-Audio 2 Technical Report
- arxiv url: http://arxiv.org/abs/2507.16632v2
- Date: Thu, 24 Jul 2025 11:13:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 13:02:36.862228
- Title: Step-Audio 2 Technical Report
- Title(参考訳): Step-Audio 2テクニカルレポート
- Authors: Boyong Wu, Chao Yan, Chen Hu, Cheng Yi, Chengli Feng, Fei Tian, Feiyu Shen, Gang Yu, Haoyang Zhang, Jingbei Li, Mingrui Chen, Peng Liu, Wang You, Xiangyu Tony Zhang, Xingyuan Li, Xuerui Yang, Yayue Deng, Yechang Huang, Yuxin Li, Yuxin Zhang, Zhao You, Brian Li, Changyi Wan, Hanpeng Hu, Jiangjie Zhen, Siyu Chen, Song Yuan, Xuelin Zhang, Yimin Jiang, Yu Zhou, Yuxiang Yang, Bingxin Li, Buyun Ma, Changhe Song, Dongqing Pang, Guoqiang Hu, Haiyang Sun, Kang An, Na Wang, Shuli Gao, Wei Ji, Wen Li, Wen Sun, Xuan Wen, Yong Ren, Yuankai Ma, Yufan Lu, Bin Wang, Bo Li, Changxin Miao, Che Liu, Chen Xu, Dapeng Shi, Dingyuan Hu, Donghang Wu, Enle Liu, Guanzhe Huang, Gulin Yan, Han Zhang, Hao Nie, Haonan Jia, Hongyu Zhou, Jianjian Sun, Jiaoren Wu, Jie Wu, Jie Yang, Jin Yang, Junzhe Lin, Kaixiang Li, Lei Yang, Liying Shi, Li Zhou, Longlong Gu, Ming Li, Mingliang Li, Mingxiao Li, Nan Wu, Qi Han, Qinyuan Tan, Shaoliang Pang, Shengjie Fan, Siqi Liu, Tiancheng Cao, Wanying Lu, Wenqing He, Wuxun Xie, Xu Zhao, Xueqi Li, Yanbo Yu, Yang Yang, Yi Liu, Yifan Lu, Yilei Wang, Yuanhao Ding, Yuanwei Liang, Yuanwei Lu, Yuchu Luo, Yuhe Yin, Yumeng Zhan, Yuxiang Zhang, Zidong Yang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Heung-Yeung Shum, Jiansheng Chen, Jing Li, Xiangyu Zhang, Yibo Zhu,
- Abstract要約: Step-Audio 2は、業界における音声理解と音声会話のために設計された、エンドツーエンドのマルチモーダルな大規模言語モデルである。
遅延オーディオエンコーダと推論中心強化学習(RL)を統合することにより、Step-Audio 2は自動音声認識(ASR)および音声理解において有望な性能を達成する。
- 参考スコア(独自算出の注目度): 108.04129284951314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents Step-Audio 2, an end-to-end multi-modal large language model designed for industry-strength audio understanding and speech conversation. By integrating a latent audio encoder and reasoning-centric reinforcement learning (RL), Step-Audio 2 achieves promising performance in automatic speech recognition (ASR) and audio understanding. To facilitate genuine end-to-end speech conversation, Step-Audio 2 incorporates the generation of discrete audio tokens into language modeling, significantly enhancing its responsiveness to paralinguistic information such as speaking styles and emotions. To effectively leverage the rich textual and acoustic knowledge in real-world data, Step-Audio 2 integrates retrieval-augmented generation (RAG) and is able to call external tools such as web search to mitigate hallucination and audio search to switch timbres. Trained on millions of hours of speech and audio data, Step-Audio 2 delivers intelligence and expressiveness across diverse conversational scenarios. Evaluation results demonstrate that Step-Audio 2 achieves state-of-the-art performance on various audio understanding and conversational benchmarks compared to other open-source and commercial solutions. Please visit https://github.com/stepfun-ai/Step-Audio2 for more information.
- Abstract(参考訳): 本稿では,産業用音声理解・音声会話のための多モーダル多モーダル大言語モデルであるStep-Audio 2を提案する。
遅延オーディオエンコーダと推論中心強化学習(RL)を統合することにより、Step-Audio 2は自動音声認識(ASR)および音声理解において有望な性能を達成する。
実際のエンドツーエンドの会話を容易にするため、Step-Audio 2は言語モデリングに離散音声トークンの生成を取り入れ、話し方や感情などのパラ言語情報に対する応答性を大幅に向上させる。
実世界のデータにおけるリッチテキストと音響知識を効果的に活用するために、Step-Audio 2は検索強化世代(RAG)を統合し、Web検索などの外部ツールを呼び出し、幻覚や音声検索を緩和して音色を切り替えることができる。
何百万時間もの音声と音声のデータに基づいて訓練されたStep-Audio 2は、さまざまな会話シナリオに対して、インテリジェンスと表現性を提供する。
評価結果から,Step-Audio 2は,他のオープンソースや商用のソリューションと比較して,様々な音声理解や対話型ベンチマークにおいて最先端のパフォーマンスを実現していることが示された。
詳細はhttps://github.com/stepfun-ai/Step-Audio2をご覧ください。
関連論文リスト
- Baichuan-Audio: A Unified Framework for End-to-End Speech Interaction [9.101978573666546]
Baichuan-Audioは、音声理解と生成をシームレスに統合するエンドツーエンドのオーディオ大言語モデルである。
テキスト誘導されたアライメントされた音声生成機構を備え、理解能力と生成能力の両方でリアルタイムな音声対話を可能にする。
論文 参考訳(メタデータ) (2025-02-24T15:16:34Z) - LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT [65.69648099999439]
Generative Pre-trained Transformer (GPT) モデルは、様々な自然言語処理タスクにおいて顕著なパフォーマンスを実現している。
音声認識, 理解, 生成のための新しい音声・テキストGPTベースのLLMであるLauraGPTを提案する。
論文 参考訳(メタデータ) (2023-10-07T03:17:59Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models [65.18102159618631]
マルチモーダル生成モデリングは、テキスト・ツー・イメージとテキスト・ツー・ビデオ生成においてマイルストーンを生み出した。
高品質のテキストオーディオペアを備えた大規模データセットの欠如、長期連続的なオーディオデータのモデリングの複雑さ、という2つの主な理由から、オーディオへの適用は依然として遅れている。
本稿では,これらのギャップに対処する急激な拡散モデルを用いたMake-An-Audioを提案する。
論文 参考訳(メタデータ) (2023-01-30T04:44:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。