Mutual Reinforcement of LLM Dialogue Synthesis and Summarization Capabilities for Few-Shot Dialogue Summarization
- URL: http://arxiv.org/abs/2502.17328v1
- Date: Mon, 24 Feb 2025 17:01:48 GMT
- Title: Mutual Reinforcement of LLM Dialogue Synthesis and Summarization Capabilities for Few-Shot Dialogue Summarization
- Authors: Yen-Ju Lu, Ting-Yao Hu, Hema Swetha Koppula, Hadi Pouransari, Jen-Hao Rick Chang, Yin Xia, Xiang Kong, Qi Zhu, Simon Wang, Oncel Tuzel, Raviteja Vemulapalli,
- Abstract summary: Mutual Reinforcing Data Synthesis (MRDS) within LLMs to improve few-shot dialogue summarization task.<n>By leveraging the proposed MRDS mechanism, we elicit the internal knowledge of LLM in the format of synthetic data.<n>Our method attains the highest average scores in human evaluations.
- Score: 28.989849099599667
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we propose Mutual Reinforcing Data Synthesis (MRDS) within LLMs to improve few-shot dialogue summarization task. Unlike prior methods that require external knowledge, we mutually reinforce the LLM\'s dialogue synthesis and summarization capabilities, allowing them to complement each other during training and enhance overall performances. The dialogue synthesis capability is enhanced by directed preference optimization with preference scoring from summarization capability. The summarization capability is enhanced by the additional high quality dialogue-summary paired data produced by the dialogue synthesis capability. By leveraging the proposed MRDS mechanism, we elicit the internal knowledge of LLM in the format of synthetic data, and use it to augment the few-shot real training dataset. Empirical results demonstrate that our method improves dialogue summarization, achieving a 1.5% increase in ROUGE scores and a 0.3% improvement in BERT scores in few-shot settings. Furthermore, our method attains the highest average scores in human evaluations, surpassing both the pre-trained models and the baselines fine-tuned solely for summarization tasks.
Related papers
- From Reviews to Dialogues: Active Synthesis for Zero-Shot LLM-based Conversational Recommender System [49.57258257916805]
Large Language Models (LLMs) demonstrate strong zero-shot recommendation capabilities.
Practical applications often favor smaller, internally managed recommender models due to scalability, interpretability, and data privacy constraints.
We propose an active data augmentation framework that synthesizes conversational training data by leveraging black-box LLMs guided by active learning techniques.
arXiv Detail & Related papers (2025-04-21T23:05:47Z) - Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
This paper introduces a benchmarking framework to assess large language models (LLMs)<n>It integrates generative agent simulation to evaluate performance on key dimensions: information extraction, context awareness, and adaptive engagement.<n>Results show that adaptive strategies improve data extraction accuracy, especially when handling ambiguous responses.
arXiv Detail & Related papers (2025-02-04T15:47:47Z) - Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
This work introduces the Align-SLM framework to enhance the semantic understanding of textless Spoken Language Models (SLMs)
Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO)
We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation.
arXiv Detail & Related papers (2024-11-04T06:07:53Z) - Prompting and Fine-Tuning of Small LLMs for Length-Controllable Telephone Call Summarization [33.67670065326008]
This paper explores the rapid development of a telephone call summarization system utilizing large language models (LLMs)
Our results show that fine-tuned Llama-2-7B-based summarization model performs on-par with GPT-4 in terms of factual accuracy, completeness and conciseness.
arXiv Detail & Related papers (2024-10-24T10:32:10Z) - ToolFlow: Boosting LLM Tool-Calling Through Natural and Coherent Dialogue Synthesis [80.34000499166648]
We propose a Graph-based Sampling strategy to sample more relevant tool combinations, and a Planned-generation strategy to create plans that guide the synthesis of coherent dialogues.
We apply SFT on LLaMA-3.1-8B using 8,000 synthetic dialogues generated with ToolFlow.
Results show that the model achieves tool-calling performance comparable to or even surpassing GPT-4, while maintaining strong general capabilities.
arXiv Detail & Related papers (2024-10-24T05:45:04Z) - Self-Boosting Large Language Models with Synthetic Preference Data [97.94185115047999]
We introduce SynPO, a self-boosting paradigm that leverages synthetic preference data for model alignment.
After four SynPO iterations, Llama3-8B and Mistral-7B show significant enhancements in instruction-following abilities.
SynPO improves the general performance of LLMs on various tasks, validated by a 3.2 to 5.0 average score increase on the well-recognized Open LLM leaderboard.
arXiv Detail & Related papers (2024-10-09T14:57:31Z) - Synthetic Patient-Physician Dialogue Generation from Clinical Notes Using LLM [27.33193944412666]
Medical dialogue systems (MDS) enhance patient-physician communication, improve healthcare accessibility, and reduce costs.
However, acquiring suitable data to train these systems poses significant challenges.
Our approach, SynDial, uses a single LLM iteratively with zero-shot prompting and a feedback loop to generate high-quality synthetic dialogues.
arXiv Detail & Related papers (2024-08-12T16:49:22Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
We propose an alternative approach called User-Guided Response Optimization (UGRO) to combine it with a smaller task-oriented dialogue model.
This approach uses LLM as annotation-free user simulator to assess dialogue responses, combining them with smaller fine-tuned end-to-end TOD models.
Our approach outperforms previous state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2023-06-16T13:04:56Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUS is a pre-trained encoder-decoder model for summarizing dialogues in any new domain.
Our experiments show that DIONYSUS outperforms existing methods on six datasets.
arXiv Detail & Related papers (2022-12-20T06:21:21Z) - Leveraging Non-dialogue Summaries for Dialogue Summarization [1.0742675209112622]
We apply transformations to document summarization data pairs to create training data that better befit dialogue summarization.
We conduct extensive experiments across both English and Korean to verify our approach.
arXiv Detail & Related papers (2022-10-17T23:34:31Z) - Leveraging Historical Interaction Data for Improving Conversational
Recommender System [105.90963882850265]
We propose a novel pre-training approach to integrate item- and attribute-based preference sequence.
Experiment results on two real-world datasets have demonstrated the effectiveness of our approach.
arXiv Detail & Related papers (2020-08-19T03:43:50Z) - Multimodal Semi-supervised Learning Framework for Punctuation Prediction
in Conversational Speech [17.602098162338137]
We explore a multimodal semi-supervised learning approach for punctuation prediction.
We learn representations from large amounts of unlabelled audio and text data.
When trained on 1 hour of speech and text data, the proposed model achieved 9-18% absolute improvement over baseline model.
arXiv Detail & Related papers (2020-08-03T08:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.