論文の概要: Survey on Recent Progress of AI for Chemistry: Methods, Applications, and Opportunities
- arxiv url: http://arxiv.org/abs/2502.17456v1
- Date: Sun, 09 Feb 2025 13:39:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:22:59.833399
- Title: Survey on Recent Progress of AI for Chemistry: Methods, Applications, and Opportunities
- Title(参考訳): 化学のためのAIの最近の進歩に関する調査:方法、応用、機会
- Authors: Ding Hu, Pengxiang Hua, Zhen Huang,
- Abstract要約: 我々は、計算の観点から、化学における現在のAI技術について包括的にレビューする。
多様な情報源からのデータの特性について論じ、続いて様々な表現法の概要を述べる。
- 参考スコア(独自算出の注目度): 2.76328573814979
- License:
- Abstract: The development of artificial intelligence (AI) techniques has brought revolutionary changes across various realms. In particular, the use of AI-assisted methods to accelerate chemical research has become a popular and rapidly growing trend, leading to numerous groundbreaking works. In this paper, we provide a comprehensive review of current AI techniques in chemistry from a computational perspective, considering various aspects in the design of methods. We begin by discussing the characteristics of data from diverse sources, followed by an overview of various representation methods. Next, we review existing models for several topical tasks in the field, and conclude by highlighting some key challenges that warrant further attention.
- Abstract(参考訳): 人工知能(AI)技術の発展は、様々な領域に革命的な変化をもたらした。
特に、化学研究を加速するためのAI支援手法の使用は、人気を博し、急速に成長する傾向にあり、多くの画期的な研究につながっている。
本稿では, 計算的観点からの化学における現在のAI技術に関する総合的なレビューを行い, 手法設計における様々な側面について考察する。
まず、多様な情報源からのデータの特徴を議論し、続いて様々な表現方法の概要を述べる。
次に、この分野におけるいくつかの話題課題に対する既存モデルをレビューし、さらなる注意を喚起するいくつかの重要な課題を強調して結論付けます。
関連論文リスト
- A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
この調査は、コードインテリジェンスの発展に関する体系的なレビューを示す。
50以上の代表モデルとその変種、20以上のタスクのカテゴリ、および680以上の関連する広範な研究をカバーしている。
発達軌道の考察に基づいて、コードインテリジェンスとより広範なマシンインテリジェンスとの間の新たな相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-21T08:54:56Z) - Artificial Intelligence for Operations Research: Revolutionizing the Operations Research Process [15.471884798655063]
人工知能(AI)技術の急速な進歩により、オペレーティングリサーチ(OR)を含む様々な分野に革命をもたらす新たな機会が開かれた。
本稿では,AIのORプロセス(AI4OR)への統合について検討し,その有効性と効率を複数の段階にわたって向上させる。
AIとORの相乗効果は、多くの領域において、大幅な進歩と新しいソリューションを推し進める可能性がある。
論文 参考訳(メタデータ) (2024-01-06T15:55:14Z) - Multimodal Explainable Artificial Intelligence: A Comprehensive Review of Methodological Advances and Future Research Directions [2.35574869517894]
本研究は、MXAI(Multimodal XAI)領域における最近の進歩の分析に焦点をあてる。
MXAIは、主予測と説明タスクに複数のモダリティを含む手法から構成される。
論文 参考訳(メタデータ) (2023-06-09T07:51:50Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - AI Techniques in the Microservices Life-Cycle: A Systematic Mapping Study [8.026381963838272]
AI(MS)の利用は、かなりの数の調査で示されているように、新興分野である。
私たちは、DevOpsフェーズにおいて、すべての品質属性(QA)を改善するために、AIテクニックの使用間のすべての可能な接続を明らかにするために、徹底的なアプローチを取っています。
論文 参考訳(メタデータ) (2023-05-25T14:24:37Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
既存の知識強化手法を2つの主要なカテゴリと4つのサブカテゴリに分類する新しい分類法を導入する。
我々は、現在のアプリケーションドメインを解明し、将来的な研究の展望について洞察を提供する。
論文 参考訳(メタデータ) (2023-02-04T04:54:30Z) - A Survey of Explainable AI in Deep Visual Modeling: Methods and Metrics [24.86176236641865]
我々は、ディープビジュアルモデルを解釈するための方法とメトリクスに焦点を当てたExplainable AIの最初の調査を示す。
最先端技術に沿った目覚ましい貢献をカバーし、既存の技術に関する分類学的組織を提供するだけでなく、さまざまな評価指標を発掘する。
論文 参考訳(メタデータ) (2023-01-31T06:49:42Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Recent Progress in Appearance-based Action Recognition [73.6405863243707]
アクション認識は、ビデオ内の様々な人間の行動を特定するタスクである。
最近の外見に基づく手法は、正確な行動認識に向けて有望な進歩を遂げている。
論文 参考訳(メタデータ) (2020-11-25T10:18:12Z) - Deep Learning and Knowledge-Based Methods for Computer Aided Molecular
Design -- Toward a Unified Approach: State-of-the-Art and Future Directions [0.0]
分子レベルでの操作特性による化合物の最適設計は、しばしば科学的な進歩とプロセスシステムの性能向上の鍵となる。
本稿では,コンピュータ支援分子設計の課題と課題について述べる。
論文 参考訳(メタデータ) (2020-05-18T14:17:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。