論文の概要: Study on Downlink CSI compression: Are Neural Networks the Only Solution?
- arxiv url: http://arxiv.org/abs/2502.17459v1
- Date: Mon, 10 Feb 2025 08:00:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:22:47.909867
- Title: Study on Downlink CSI compression: Are Neural Networks the Only Solution?
- Title(参考訳): ダウンリンクCSI圧縮に関する研究:ニューラルネットワークは唯一の解か?
- Authors: K. Sai Praneeth, Anil Kumar Yerrapragada, Achyuth Sagireddi, Sai Prasad, Radha Krishna Ganti,
- Abstract要約: 大量多入力多出力(MIMO)システムにより、ダウンリンク(DL)における高いデータレートを実現する
高いDLデータレートは、空間多重化とビームフォーミングの効果的な実装によって達成される。
周波数分割二重化(FDD)システムでは、DLチャネル状態情報(CSI)をユーザ機器(UE)からgNBに送信する必要がある。
オーバヘッド問題に対処するため、自動エンコーダを用いたAI/ML手法が検討され、UEのエンコーダニューラルネットワークモデルがCSIを圧縮し、gNBのデコーダニューラルネットワークモデルがそれを再構成する。
- 参考スコア(独自算出の注目度): 1.0305984157213843
- License:
- Abstract: Massive Multi Input Multi Output (MIMO) systems enable higher data rates in the downlink (DL) with spatial multiplexing achieved by forming narrow beams. The higher DL data rates are achieved by effective implementation of spatial multiplexing and beamforming which is subject to availability of DL channel state information (CSI) at the base station. For Frequency Division Duplexing (FDD) systems, the DL CSI has to be transmitted by User Equipment (UE) to the gNB and it constitutes a significant overhead which scales with the number of transmitter antennas and the granularity of the CSI. To address the overhead issue, AI/ML methods using auto-encoders have been investigated, where an encoder neural network model at the UE compresses the CSI and a decoder neural network model at the gNB reconstructs it. However, the use of AI/ML methods has a number of challenges related to (1) model complexity, (2) model generalization across channel scenarios and (3) inter-vendor compatibility of the two sides of the model. In this work, we investigate a more traditional dimensionality reduction method that uses Principal Component Analysis (PCA) and therefore does not suffer from the above challenges. Simulation results show that PCA based CSI compression actually achieves comparable reconstruction performance to commonly used deep neural networks based models.
- Abstract(参考訳): MIMO(Massive Multi Input Multi Output)システムは、狭いビームを形成することで空間多重化を実現したダウンリンク(DL)における高いデータレートを実現する。
基地局でDLチャネル状態情報(CSI)が利用可能となる空間多重化とビームフォーミングを効果的に実施することにより、高いDLデータレートを実現する。
周波数分割二重化(FDD)システムでは、DL CSIはユーザ機器(UE)によってgNBに送信され、送信アンテナの数やCSIの粒度に応じてスケールする大きなオーバーヘッドを構成する。
オーバヘッド問題に対処するため、自動エンコーダを用いたAI/ML手法が検討され、UEのエンコーダニューラルネットワークモデルがCSIを圧縮し、gNBのデコーダニューラルネットワークモデルがそれを再構成する。
しかし、AI/ML手法の使用には、(1)モデルの複雑さ、(2)チャネルシナリオ間のモデルの一般化、(3)モデルの両側のベンダー間互換性に関する多くの課題がある。
本研究では,主成分分析(PCA)を用いた従来型の次元削減手法について検討する。
シミュレーションの結果、PCAベースのCSI圧縮は、一般的に使用されるディープニューラルネットワークベースモデルに匹敵する再構成性能を実際に達成していることが示された。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems [45.22132581755417]
周波数分割二重化(FDD)大規模マルチインプット多重出力(MIMO)システムにおけるダウンリンクプリコーディングには、正確なチャネル状態情報(CSI)が不可欠である。
しかし,アンテナやサブキャリアの規模が大きくなると,ユーザ機器(UE)からのフィードバックによるCSI取得が困難になる。
CSIを圧縮するために深層学習に基づく手法が登場したが、これらの方法はかなりの収集サンプルを必要とする。
既存のディープラーニング手法は、フル次元のCSIフィードバックに重点を置いているため、フィードバックオーバーヘッドが劇的に増加することにも悩まされる。
低オーバーヘッド抽出に基づくFew-Shot CSIを提案する。
論文 参考訳(メタデータ) (2023-12-07T06:01:47Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
再構成可能なインテリジェントサーフェス(RIS)は,Tera-Hertz大規模マルチインプットマルチアウトプット(MIMO)通信システムのサービスカバレッジを大幅に向上させることができる。
しかし、パイロットとフィードバック信号のオーバーヘッドが限定された正確な高次元チャネル状態情報(CSI)を得ることは困難である。
本稿では、RIS支援Tera-Hertzマルチユーザアクセスシステムのための、ディープラーニング(DL)に基づくレート分割多重アクセス方式を提案する。
論文 参考訳(メタデータ) (2022-09-18T03:07:37Z) - Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems [77.0986534024972]
ディープラーニング(DL)ベースのCSIフィードバックは、DLベースのオートエンコーダによるCSI圧縮と再構築を指し、フィードバックオーバーヘッドを大幅に削減することができる。
その焦点は、CSIフィードバックの正確性を改善するために、新しいニューラルネットワークアーキテクチャとコミュニケーション専門家の知識の利用である。
論文 参考訳(メタデータ) (2022-06-29T03:28:57Z) - Deep Learning for 1-Bit Compressed Sensing-based Superimposed CSI
Feedback [2.6831842796906393]
本稿では,1ビット圧縮されたセンサによる重畳されたCSIフィードバックを改善するためのディープラーニング方式を提案する。
提案方式は,UL-USとダウンリンクCSIの回復精度を低処理遅延で向上する。
論文 参考訳(メタデータ) (2022-03-13T09:33:53Z) - PolarDenseNet: A Deep Learning Model for CSI Feedback in MIMO Systems [18.646674391114548]
UEにおけるCSIを低次元の潜在空間に符号化し、基地局で復号する自動エンコーダアーキテクチャに基づくAIベースのCSIフィードバックを提案する。
シミュレーションの結果,AIに基づく提案したアーキテクチャは,最先端の高分解能線形組合せ符号ブックよりも優れていた。
論文 参考訳(メタデータ) (2022-02-02T19:04:49Z) - Data-Driven Deep Learning Based Hybrid Beamforming for Aerial Massive
MIMO-OFDM Systems with Implicit CSI [29.11998008894847]
本稿では,データ駆動型深層学習に基づく統合ハイブリッドビームフォーミングフレームワークを提案する。
TDDシステムでは、提案されたDLベースのアプローチは、E2Eニューラルネットワークとして、アップリンクパイロットの組み合わせとダウンリンクハイブリッドビームフォーミングモジュールを共同でモデル化する。
FDDシステムにおいて、我々は、E2Eニューラルネットワークとして、ダウンリンクパイロットトランスミッション、アップリンクCSIフィードバック、およびダウンリンクハイブリッドビームフォーミングモジュールを共同でモデル化する。
論文 参考訳(メタデータ) (2022-01-18T07:21:00Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
ニューラルネットワーク(NN)を用いて,プリコーディング行列インジケータ(PMI)符号化とデコードモジュールを置き換える,低オーバヘッド特性を継承するDLベースの暗黙的フィードバックアーキテクチャを提案する。
1つのリソースブロック(RB)では、2つのアンテナ構成下のタイプIコードブックと比較して25.0%と40.0%のオーバーヘッドを節約できる。
論文 参考訳(メタデータ) (2021-05-21T02:43:02Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
我々は、通常見過ごされる設計空間、すなわち事前定義されたネットワークのチャネル構成を調整することを検討する。
この調整は、拡張ベースラインネットワークを縮小することで実現でき、性能が向上する。
画像分類、視覚追跡、画像復元のための様々なネットワークとデータセットで実験を行う。
論文 参考訳(メタデータ) (2020-06-29T17:59:26Z) - Distributed Deep Convolutional Compression for Massive MIMO CSI Feedback [9.959844922120524]
大規模マルチインプット・マルチアウトプット(MIMO)システムは、空間的多様性と多重化ゲインを達成するために、基地局(BS)のダウンリンクチャネル状態情報(CSI)を必要とする。
本稿では、畳み込み層と量子化およびエントロピー符号化ブロックからなるディープラーニング(DL)ベースのCSI圧縮スキームDeepCMCを提案する。
DeepCMCは、CSI品質とフィードバックオーバーヘッドの間のトレードオフを可能にする、重み付けされたレート歪みコストを最小限に抑えるように訓練されている。
論文 参考訳(メタデータ) (2020-03-07T12:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。