A generalized dual potential for inelastic Constitutive Artificial Neural Networks: A JAX implementation at finite strains
- URL: http://arxiv.org/abs/2502.17490v1
- Date: Wed, 19 Feb 2025 20:16:45 GMT
- Title: A generalized dual potential for inelastic Constitutive Artificial Neural Networks: A JAX implementation at finite strains
- Authors: Hagen Holthusen, Kevin Linka, Ellen Kuhl, Tim Brepols,
- Abstract summary: We present a methodology for designing a generalized dual potential, or pseudo potential, for inelastic Constitutive Artificial Neural Networks (iCANNs)<n>This potential inherently satisfies thermodynamic consistency for large deformations.<n>Our results indicate that the novel architecture robustly discovers interpretable models and parameters, while autonomously revealing the degree of inelasticity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a methodology for designing a generalized dual potential, or pseudo potential, for inelastic Constitutive Artificial Neural Networks (iCANNs). This potential, expressed in terms of stress invariants, inherently satisfies thermodynamic consistency for large deformations. In comparison to our previous work, the new potential captures a broader spectrum of material behaviors, including pressure-sensitive inelasticity. To this end, we revisit the underlying thermodynamic framework of iCANNs for finite strain inelasticity and derive conditions for constructing a convex, zero-valued, and non-negative dual potential. To embed these principles in a neural network, we detail the architecture's design, ensuring a priori compliance with thermodynamics. To evaluate the proposed architecture, we study its performance and limitations discovering visco-elastic material behavior, though the method is not limited to visco-elasticity. In this context, we investigate different aspects in the strategy of discovering inelastic materials. Our results indicate that the novel architecture robustly discovers interpretable models and parameters, while autonomously revealing the degree of inelasticity. The iCANN framework, implemented in JAX, is publicly accessible at https://doi.org/10.5281/zenodo.14894687.
Related papers
- Accounting for plasticity: An extension of inelastic Constitutive Artificial Neural Networks [0.0]
We present the extension and application of an iCANN to the inelastic phenomena of plasticity.
We learn four feed-forward networks in combination with a recurrent neural network and use the second Piola-Kirchhoff stress measure for training.
We observe already satisfactory results for training on one load case only while extremely precise agreement is found for an increase in load cases.
arXiv Detail & Related papers (2024-07-27T19:19:42Z) - Thermodynamics-Consistent Graph Neural Networks [50.0791489606211]
We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures.
The GE-GNN architecture ensures thermodynamic consistency by predicting the molar excess Gibbs free energy.
We demonstrate high accuracy and thermodynamic consistency of the activity coefficient predictions.
arXiv Detail & Related papers (2024-07-08T06:58:56Z) - Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks [50.29356570858905]
We introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation.<n>We provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated.<n>This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.
arXiv Detail & Related papers (2024-05-24T17:19:57Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Theory and implementation of inelastic Constitutive Artificial Neural
Networks [0.0]
We extend the Constitutive Artificial Neural Networks (CANNs) to inelastic materials (iCANN)
We demonstrate that the iCANN is capable of autonomously discovering models for artificially generated data.
Our vision is that the iCANN will reveal to us new ways to find the various inelastic phenomena hidden in the data and to understand their interaction.
arXiv Detail & Related papers (2023-11-10T20:13:29Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Gibbs-Duhem-Informed Neural Networks for Binary Activity Coefficient
Prediction [45.84205238554709]
We propose Gibbs-Duhem-informed neural networks for the prediction of binary activity coefficients at varying compositions.
We include the Gibbs-Duhem equation explicitly in the loss function for training neural networks.
arXiv Detail & Related papers (2023-05-31T07:36:45Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - NN-EUCLID: deep-learning hyperelasticity without stress data [0.0]
We propose a new approach for unsupervised learning of hyperelastic laws with physics-consistent deep neural networks.
In contrast to supervised learning, which assumes the stress-strain, the approach only uses realistically measurable full-elastic field displacement and global force availability data.
arXiv Detail & Related papers (2022-05-04T13:54:54Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
Multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of inelastic materials.
Data-driven approaches based on deep learning have risen as a promising alternative to replace ad-hoc laws and speed-up numerical methods.
Here, we propose Thermodynamics-based Artificial Neural Networks (TANN) for the modeling of mechanical materials with inelastic and complex microstructure.
arXiv Detail & Related papers (2021-08-30T11:50:38Z) - Thermodynamics-based Artificial Neural Networks for constitutive
modeling [0.0]
We propose a new class of data-driven, physics-based, neural networks for modeling of strain rate independent processes at the material point level.
The two basic principles of thermodynamics are encoded in the network's architecture by taking advantage of automatic differentiation.
We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, with strain hardening and softening strain.
arXiv Detail & Related papers (2020-05-25T15:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.