論文の概要: SAE-V: Interpreting Multimodal Models for Enhanced Alignment
- arxiv url: http://arxiv.org/abs/2502.17514v1
- Date: Sat, 22 Feb 2025 14:20:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:23:46.773011
- Title: SAE-V: Interpreting Multimodal Models for Enhanced Alignment
- Title(参考訳): SAE-V:拡張アライメントのためのマルチモーダルモデルの解釈
- Authors: Hantao Lou, Changye Li, Jiaming Ji, Yaodong Yang,
- Abstract要約: 本稿では,SAEパラダイムをマルチモーダルな言語モデルに拡張する機械的解釈可能性フレームワークであるSAE-Vを紹介する。
SAE-Vは、追加のモデルを必要としないモデルアライメントを強化するために、本質的なデータフィルタリングメカニズムを提供する。
本研究は,SAE-VがMLLMの解釈性とアライメントを向上し,その内部機構に関する知見を提供するものである。
- 参考スコア(独自算出の注目度): 7.374787098456952
- License:
- Abstract: With the integration of image modality, the semantic space of multimodal large language models (MLLMs) is more complex than text-only models, making their interpretability more challenging and their alignment less stable, particularly susceptible to low-quality data, which can lead to inconsistencies between modalities, hallucinations, and biased outputs. As a result, developing interpretability methods for MLLMs is crucial for improving alignment quality and efficiency. In text-only LLMs, Sparse Autoencoders (SAEs) have gained attention for their ability to interpret latent representations. However, extending SAEs to multimodal settings presents new challenges due to modality fusion and the difficulty of isolating cross-modal representations. To address these challenges, we introduce SAE-V, a mechanistic interpretability framework that extends the SAE paradigm to MLLMs. By identifying and analyzing interpretable features along with their corresponding data, SAE-V enables fine-grained interpretation of both model behavior and data quality, facilitating a deeper understanding of cross-modal interactions and alignment dynamics. Moreover, by utilizing cross-modal feature weighting, SAE-V provides an intrinsic data filtering mechanism to enhance model alignment without requiring additional models. Specifically, when applied to the alignment process of MLLMs, SAE-V-based data filtering methods could achieve more than 110% performance with less than 50% data. Our results highlight SAE-V's ability to enhance interpretability and alignment in MLLMs, providing insights into their internal mechanisms.
- Abstract(参考訳): 画像モダリティの統合により、マルチモーダル大言語モデル(MLLM)のセマンティック空間は、テキストのみのモデルよりも複雑になり、解釈可能性がより困難になり、そのアライメントがより安定しにくくなり、特に低品質なデータの影響を受けにくくなり、モダリティ、幻覚、偏見出力の不整合につながる可能性がある。
その結果,アライメントの品質と効率を向上させるため,MLLMの解釈可能性開発が重要である。
テキストのみのLLMでは、スパースオートエンコーダ(SAE)が潜在表現の解釈能力に注目されている。
しかし、SAEをマルチモーダルな設定に拡張することは、モダリティ融合とクロスモーダルな表現の分離の難しさによる新しい課題をもたらす。
これらの課題に対処するために,SAEパラダイムをMLLMに拡張した機械的解釈可能性フレームワークであるSAE-Vを紹介する。
SAE-Vは、対応するデータとともに解釈可能な特徴を特定し解析することにより、モデル行動とデータ品質の両方をきめ細かな解釈を可能にし、相互モーダル相互作用とアライメントダイナミクスのより深い理解を容易にする。
さらに、クロスモーダルな特徴重み付けを利用することで、SAE-Vは、追加のモデルを必要としないモデルアライメントを強化するために、本質的なデータフィルタリング機構を提供する。
具体的には、MLLMのアライメントプロセスに適用した場合、SAE-Vベースのデータフィルタリング手法は50%未満のデータで110%以上の性能を達成することができる。
本研究は,SAE-VがMLLMの解釈性とアライメントを向上し,その内部機構に関する知見を提供するものである。
関連論文リスト
- LF-Steering: Latent Feature Activation Steering for Enhancing Semantic Consistency in Large Language Models [16.37602070339033]
LLM(Large Language Models)は、意味的に等価なパラフレーズ入力によって、しばしば一貫性のない応答を生成する。
セマンティック不整合の原因となる潜在特徴表現を正確に識別する新しいアクティベーションステアリング手法LF-ステアリングを提案する。
本手法は, 関連トランス層の隠蔽状態をスパースオートエンコーダに基づいて, 疎活性化された高次元特徴空間にマッピングする。
論文 参考訳(メタデータ) (2025-01-19T13:06:51Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
画像の理解と生成の両方が可能なシンプルだが強力なエンコーダのないMLLMであるSynerGen-VLを提案する。
トークンの折り畳み機構と,高分解能画像理解を効果的に支援するビジョンエキスパートベースのプログレッシブアライメント事前学習戦略を導入する。
コードとモデルはリリースされます。
論文 参考訳(メタデータ) (2024-12-12T18:59:26Z) - Multi-Task Learning with LLMs for Implicit Sentiment Analysis: Data-level and Task-level Automatic Weight Learning [18.836998294161834]
暗黙の感情分析は、有能なキュー語が欠如していることによる重大な課題を呈する。
MT-ISAは,大規模言語モデルの生成と推論機能を活用することでISAを強化する新しいMTLフレームワークである。
データレベルとタスクレベルの自動重み付け学習(AWL)を導入し、関係を動的に識別し、信頼性の高いデータや重要なタスクを優先する。
論文 参考訳(メタデータ) (2024-12-12T08:15:16Z) - ILLUME: Illuminating Your LLMs to See, Draw, and Self-Enhance [47.53085562765585]
本稿では,一大言語モデルにマルチモーダル理解と生成機能をシームレスに統合する統合型マルチモーダル言語モデル (MLLM) であるILLUMEを紹介する。
画像テキストアライメントに通常必要となる大規模なデータセットサイズに対処するため,視覚トークン化器の設計によるデータ効率の向上を提案する。
従来の研究で探索されていない理解と生成能力の相乗的向上を促進するために,我々は,新しい自己向上型マルチモーダルアライメント方式を導入する。
論文 参考訳(メタデータ) (2024-12-09T17:11:50Z) - MM-R$^3$: On (In-)Consistency of Multi-modal Large Language Models (MLLMs) [26.475993408532304]
本研究では,MLLMモデルが意味論的に類似したクエリに対して,意味論的に類似あるいは同一の応答を生成する能力について検討する。
本稿では,SoTA MLLMの一貫性と精度の観点から,MM-R$3$ベンチマークを提案する。
我々の分析では、一貫性が必ずしも精度と一致していないことを示し、高い精度のモデルが必ずしも一致しているとは限らないことを示し、その逆も示している。
論文 参考訳(メタデータ) (2024-10-07T06:36:55Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
我々は,新しいマルチモーダル命令データ進化フレームワークであるMMEvolを提案する。
MMEvolは、きめ細かい知覚、認知的推論、相互作用の進化の洗練された組み合わせによって、データ品質を反復的に改善する。
提案手法は,9つのタスクにおいて,最先端モデルに比べて有意に少ない精度でSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-09-09T17:44:00Z) - Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
我々は、VidQAベンチマークとデータセットのバイアスを特定するために、MIS(Modality importance score)を導入する。
また,最新のMLLMを用いてモダリティの重要度を推定する手法を提案する。
以上の結果から,既存のデータセットでは,モダリティの不均衡による情報統合が効果的に行われていないことが示唆された。
論文 参考訳(メタデータ) (2024-08-22T23:32:42Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
本稿では,視覚的特徴を大規模多モードモデルの語彙上の確率分布にマッピングする視覚トークンの概念を提案する。
さらに、LMM内の意味空間における視覚的特徴の分布と、視覚情報を表現するためにテキスト埋め込みを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2024-03-12T14:58:52Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。