A Machine Learning Approach for Design of Frequency Selective Surface based Radar Absorbing Material via Image Prediction
- URL: http://arxiv.org/abs/2502.17534v1
- Date: Mon, 24 Feb 2025 15:05:40 GMT
- Title: A Machine Learning Approach for Design of Frequency Selective Surface based Radar Absorbing Material via Image Prediction
- Authors: Vijay Kumar Sutrakar, Anjana P K, Sajal Kesharwani, Siddharth Bisariya,
- Abstract summary: The paper presents an innovative methodology for designing frequency selective surface (FSS) based radar absorbing materials using machine learning (ML) technique.<n>In conventional electromagnetic design, unit cell dimensions of FSS are used as input and absorption coefficient is then predicted for a given design.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper presents an innovative methodology for designing frequency selective surface (FSS) based radar absorbing materials using machine learning (ML) technique. In conventional electromagnetic design, unit cell dimensions of FSS are used as input and absorption coefficient is then predicted for a given design. In this paper, absorption coefficient is considered as input to ML model and image of FSS unit cell is predicted. Later, this image is used for generating the FSS unit cell parameters. Eleven different ML models are studied over a wide frequency band of 1GHz to 30GHz. Out of which six ML models (i.e. (a) Random Forest classification, (b) K- Neighbors Classification, (c) Grid search regression, (d) Random Forest regression, (e) Decision tree classification, and (f) Decision tree regression) show training accuracy more than 90%. The absorption coefficients with varying frequencies of these predicted images are subsequently evaluated using commercial electromagnetic solver. The performance of these ML models is encouraging, and it can be used for accelerating design and optimization of high performance FSS based radar absorbing material for advanced electromagnetic applications in future.
Related papers
- Design of Resistive Frequency Selective Surface based Radar Absorbing Structure-A Deep Learning Approach [0.0]
The proposed model can be used for the low-cost design of various radar absorbing structures using a single unit cell and thickness across the band of frequencies.
arXiv Detail & Related papers (2025-02-26T14:09:13Z) - Predicting Satisfied User and Machine Ratio for Compressed Images: A Unified Approach [58.71009078356928]
We create a deep learning-based model to predict Satisfied User Ratio (SUR) and Satisfied Machine Ratio (SMR) of compressed images simultaneously.<n> Experimental results indicate that the proposed model significantly outperforms state-of-the-art SUR and SMR prediction methods.
arXiv Detail & Related papers (2024-12-23T11:09:30Z) - Semiparametric inference for impulse response functions using double/debiased machine learning [49.1574468325115]
We introduce a machine learning estimator for the impulse response function (IRF) in settings where a time series of interest is subjected to multiple discrete treatments.
The proposed estimator can rely on fully nonparametric relations between treatment and outcome variables, opening up the possibility to use flexible machine learning approaches to estimate IRFs.
arXiv Detail & Related papers (2024-11-15T07:42:02Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Dual-band feature selection for maturity classification of specialty crops by hyperspectral imaging [5.905721043072562]
The maturity classification of specialty crops such as strawberries and tomatoes is an essential agricultural downstream activity.
Recent advancements in Deep Learning have produced encouraging results in color images for maturity classification applications.
We present a feature extraction method to compute yet distinctive features for the maturity classification.
arXiv Detail & Related papers (2024-05-16T10:01:16Z) - Support Vector Machine for Determining Euler Angles in an Inertial
Navigation System [55.41644538483948]
The paper discusses the improvement of the accuracy of an inertial navigation system created on the basis of MEMS sensors using machine learning (ML) methods.
The proposed algorithm based on MO has demonstrated its ability to correctly classify in the presence of noise typical for MEMS sensors.
arXiv Detail & Related papers (2022-12-07T10:01:11Z) - Machine Learning based Extraction of Boundary Conditions from Doppler
Echo Images for Patient Specific Coarctation of the Aorta: Computational
Fluid Dynamics Study [0.0]
This study aims to investigate the application of machine learning (ML) methods to obtain boundary conditions (BCs) from Doppler Echocardiography images.
Our proposed approach combines ML and CFD to model haemodynamic flow within the region of interest.
arXiv Detail & Related papers (2022-09-19T16:00:38Z) - Accurate Discharge Coefficient Prediction of Streamlined Weirs by
Coupling Linear Regression and Deep Convolutional Gated Recurrent Unit [2.4475596711637433]
The present study proposes data-driven modeling techniques, as an alternative to CFD simulation, to predict the discharge coefficient based on an experimental dataset.
It is found that the proposed three layer hierarchical DL algorithm consists of a convolutional layer coupled with two subsequent GRU levels, which is also hybridized with the LR method, leads to lower error metrics.
arXiv Detail & Related papers (2022-04-12T01:59:36Z) - Memory-Efficient Backpropagation through Large Linear Layers [107.20037639738433]
In modern neural networks like Transformers, linear layers require significant memory to store activations during backward pass.
This study proposes a memory reduction approach to perform backpropagation through linear layers.
arXiv Detail & Related papers (2022-01-31T13:02:41Z) - Introducing Randomized High Order Fuzzy Cognitive Maps as Reservoir
Computing Models: A Case Study in Solar Energy and Load Forecasting [0.0]
Fuzzy Cognitive Maps (FCMs) have emerged as an interpretable signed weighted digraph method consisting of nodes (concepts) and weights.
This paper introduces a novel univariable time series forecasting technique, which is composed of a group of randomized high order FCM models labeled R-HFCM.
The proposed R-HFCM model is relevant to merging the concepts of FCM and Echo State Network (ESN) as an efficient and particular family of Reservoir Computing (RC) models.
arXiv Detail & Related papers (2022-01-06T17:58:09Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - Augmentation of the Reconstruction Performance of Fuzzy C-Means with an
Optimized Fuzzification Factor Vector [99.19847674810079]
Fuzzy C-Means (FCM) is one of the most frequently used methods to construct information granules.
In this paper, we augment the FCM-based degranulation mechanism by introducing a vector of fuzzification factors.
Experiments completed for both synthetic and publicly available datasets show that the proposed approach outperforms the generic data reconstruction approach.
arXiv Detail & Related papers (2020-04-13T04:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.