Maximal Magic for Two-qubit States
- URL: http://arxiv.org/abs/2502.17550v1
- Date: Mon, 24 Feb 2025 19:00:00 GMT
- Title: Maximal Magic for Two-qubit States
- Authors: Qiaofeng Liu, Ian Low, Zhewei Yin,
- Abstract summary: We investigate two-qubit states with maximal magic, which are most distinct from classical simulability.<n>We reveal a striking interplay between magic and entanglement: the entanglement of maximal magic states is restricted to two possible values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magic is a quantum resource essential for universal quantum computation and represents the deviation of quantum states from those that can be simulated efficiently using classical algorithms. Using the Stabilizer R\'enyi Entropy (SRE), we investigate two-qubit states with maximal magic, which are most distinct from classical simulability, and provide strong numerical evidence that the maximal second order SRE is $\log (16/7)\approx 0.827$, establishing a tighter bound than the prior $\log(5/2)\approx 0.916$. We identity 480 states saturating the new bound, which turn out to be the fiducial states for the mutually unbiased bases (MUBs) generated by the orbits of the Weyl-Heisenberg (WH) group, and conjecture that WH-MUBs are the maximal magic states for $n$-qubit, when $n\neq 1$ and 3. We also reveal a striking interplay between magic and entanglement: the entanglement of maximal magic states is restricted to two possible values, $1/2$ and $1/\sqrt{2}$, as quantified by the concurrence; none is maximally entangled.
Related papers
- Efficient mutual magic and magic capacity with matrix product states [0.0]
We introduce the mutual von-Neumann SRE and magic capacity, which can be efficiently computed in time.
We find that mutual SRE characterizes the critical point of ground states of the transverse-field Ising model.
The magic capacity characterizes transitions in the ground state of the Heisenberg and Ising model, randomness of Clifford+T circuits, and distinguishes typical and atypical states.
arXiv Detail & Related papers (2025-04-09T19:12:26Z) - Quantum Magic in Quantum Electrodynamics [0.0]
Non-stabilizerness -- the magic -- refers to the computational advantage of certain quantum states over classical computers.
We study the production of magic states in Quantum Electrodynamics via 2-to-2 scattering processes involving electrons and muons.
arXiv Detail & Related papers (2025-03-05T01:32:06Z) - Pauli measurements are not optimal for single-copy tomography [34.83118849281207]
We prove a stronger upper bound of $O(frac10Nepsilon2)$ and a lower bound of $Omega(frac9.118Nepsilon2)$.
This demonstrates the first known separation between Pauli measurements and structured POVMs.
arXiv Detail & Related papers (2025-02-25T13:03:45Z) - Independent stabilizer Rényi entropy and entanglement fluctuations in random unitary circuits [1.2815904071470707]
We investigate numerically the joint distribution of magic ($M$) and entanglement ($S$) in $N$-qubit Haar-random quantum states.<n>The distribution $P_N(M,S)$ as well as the marginals become exponentially localized.<n>Although exponentially many states with magic $M=0$ and entropy $Sapprox S_textHaar$ exist, they represent an exponentially small fraction compared to typical quantum states.
arXiv Detail & Related papers (2025-01-20T13:39:28Z) - Quantum States with Maximal Magic [0.0]
We show that if a Weyl-Heisenberg (WH) covariant Symmetric Informationally Complete (SIC) quantum measurement exists, its states uniquely maximize the stabilizer entropies by saturating the bound.<n>Our result may have implications for quantum computation at a practical level, as it demonstrates that this notion of maximal magic inherits all the difficulties of the 25-year-old SIC existence problem, along with the deep questions in number theory associated with it.
arXiv Detail & Related papers (2024-12-30T17:02:22Z) - Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.<n>This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.<n>We show how to lift classical slow mixing results in the presence of a transverse field using Poisson Feynman-Kac techniques.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Constant-Overhead Magic State Distillation [10.97201040724828]
Magic state distillation is a crucial yet resource-intensive process in fault-tolerant quantum computation.
Existing protocols require polylogarithmically growing overheads with some $gamma > 0$.
We develop protocols that achieve an $mathcalO(1)$ overhead, meaning the optimal $gamma = 0$.
arXiv Detail & Related papers (2024-08-14T18:31:22Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - The classical limit of Quantum Max-Cut [0.18416014644193066]
We show that the limit of large quantum spin $S$ should be understood as a semiclassical limit.
We present two families of classical approximation algorithms for $mathrmQMaxCut_S$ based on rounding the output of a semidefinite program to a product of Bloch coherent states.
arXiv Detail & Related papers (2024-01-23T18:53:34Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Logical Magic State Preparation with Fidelity Beyond the Distillation
Threshold on a Superconducting Quantum Processor [20.66929930736679]
Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers.
We present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code.
We further experimentally implement it on the textitZuchongzhi 2.1 superconducting quantum processor.
arXiv Detail & Related papers (2023-05-25T12:10:59Z) - Quantum Heavy-tailed Bandits [36.458771174473924]
We study multi-armed bandits (MAB) and linear bandits (SLB) with heavy-tailed rewards and quantum reward.
We first propose a new quantum mean estimator for heavy-tailed distributions, which is based on the Quantum Monte Carlo Estimator.
Based on our quantum mean estimator, we focus on quantum heavy-tailed MAB and SLB and propose quantum algorithms based on the Upper Confidence Bound (UCB) framework.
arXiv Detail & Related papers (2023-01-23T19:23:10Z) - Straddling-gates problem in multipartite quantum systems [20.428960719376164]
We study a variant of quantum circuit complexity, the binding complexity.
We show that any $m$partite Schmidt decomposable state has binding complexity linear in $m$, which hints its multi-separable property.
arXiv Detail & Related papers (2021-10-13T16:28:12Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.