Multi-Year-to-Decadal Temperature Prediction using a Machine Learning Model-Analog Framework
- URL: http://arxiv.org/abs/2502.17583v1
- Date: Mon, 24 Feb 2025 19:07:39 GMT
- Title: Multi-Year-to-Decadal Temperature Prediction using a Machine Learning Model-Analog Framework
- Authors: M. A. Fernandez, Elizabeth A. Barnes,
- Abstract summary: Multi-year-to-decadal climate prediction is a key tool in understanding the range of potential regional and global climate futures.<n>We present a framework that combines machine learning and analog forecasting for predictions on these timescales.
- Score: 0.9096537342780928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-year-to-decadal climate prediction is a key tool in understanding the range of potential regional and global climate futures. Here, we present a framework that combines machine learning and analog forecasting for predictions on these timescales. A neural network is used to learn a mask, specific to a region and lead time, with global weights based on relative importance as precursors to the evolution of that prediction target. A library of mask-weighted model states, or potential analogs, are then compared to a single mask-weighted observational state. The known future of the best matching potential analogs serve as the prediction for the future of the observational state. We match and predict 2-meter temperature using the Berkeley Earth Surface Temperature dataset for observations, and a set of CMIP6 models as the analog library. We find improved performance over traditional analog methods and initialized decadal predictions.
Related papers
- AI-Informed Model Analogs for Subseasonal-to-Seasonal Prediction [0.892687530394847]
Subseasonal-to-seasonal forecasting is crucial for public health, disaster preparedness, and agriculture.<n>We explore the use of an interpretable AI-informed model analog forecasting approach to improve S2S predictions.
arXiv Detail & Related papers (2025-06-16T21:39:13Z) - Data driven weather forecasts trained and initialised directly from observations [1.44556167750856]
Skilful Machine Learned weather forecasts have challenged our approach to numerical weather prediction.
Data-driven systems have been trained to forecast future weather by learning from long historical records of past weather.
We propose a new approach, training a neural network to predict future weather purely from historical observations.
arXiv Detail & Related papers (2024-07-22T12:23:26Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Predicting Temperature of Major Cities Using Machine Learning and Deep
Learning [0.0]
We use the database made by University of Dayton which consists the change of temperature in major cities to predict the temperature of different cities during any time in future.
This document contains our methodology for being able to make such predictions.
arXiv Detail & Related papers (2023-09-23T10:23:00Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting [10.083361616081874]
This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting.
Lagged numerical ensemble forecasts and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods.
For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models.
arXiv Detail & Related papers (2022-11-29T01:11:04Z) - Computing the ensemble spread from deterministic weather predictions
using conditional generative adversarial networks [0.0]
We propose to use deep-learning algorithms to learn the statistical properties of an ensemble prediction system.
Once trained, the costly ensemble prediction system will not be needed anymore to obtain future ensemble forecasts.
arXiv Detail & Related papers (2022-05-18T19:10:38Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - A Bayesian Deep Learning Approach to Near-Term Climate Prediction [12.870804083819603]
We pursue a complementary machine-learning-based approach to climate prediction.
In particular, we find that a feedforward convolutional network with a Densenet architecture is able to outperform a convolutional LSTM in terms of predictive skill.
arXiv Detail & Related papers (2022-02-23T00:28:36Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.