AI-Informed Model Analogs for Subseasonal-to-Seasonal Prediction
- URL: http://arxiv.org/abs/2506.14022v1
- Date: Mon, 16 Jun 2025 21:39:13 GMT
- Title: AI-Informed Model Analogs for Subseasonal-to-Seasonal Prediction
- Authors: Jacob B. Landsberg, Elizabeth A. Barnes, Matthew Newman,
- Abstract summary: Subseasonal-to-seasonal forecasting is crucial for public health, disaster preparedness, and agriculture.<n>We explore the use of an interpretable AI-informed model analog forecasting approach to improve S2S predictions.
- Score: 0.892687530394847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Subseasonal-to-seasonal forecasting is crucial for public health, disaster preparedness, and agriculture, and yet it remains a particularly challenging timescale to predict. We explore the use of an interpretable AI-informed model analog forecasting approach, previously employed on longer timescales, to improve S2S predictions. Using an artificial neural network, we learn a mask of weights to optimize analog selection and showcase its versatility across three varied prediction tasks: 1) classification of Week 3-4 Southern California summer temperatures; 2) regional regression of Month 1 midwestern U.S. summer temperatures; and 3) classification of Month 1-2 North Atlantic wintertime upper atmospheric winds. The AI-informed analogs outperform traditional analog forecasting approaches, as well as climatology and persistence baselines, for deterministic and probabilistic skill metrics on both climate model and reanalysis data. We find the analog ensembles built using the AI-informed approach also produce better predictions of temperature extremes and improve representation of forecast uncertainty. Finally, by using an interpretable-AI framework, we analyze the learned masks of weights to better understand S2S sources of predictability.
Related papers
- Deep Learning Meets Teleconnections: Improving S2S Predictions for European Winter Weather [2.3440344026824125]
Predictions on subseasonal-to-seasonal timescales range from two weeks to two month.<n>Teleconnections, such as the stratospheric polar vortex (SPV) and Madden-Julian Oscillation (MJO) offer windows of enhanced predictability.<n>We developed and evaluated deep learning architectures to predict North Atlantic-European weather regimes.
arXiv Detail & Related papers (2025-04-10T10:23:07Z) - Multi-Year-to-Decadal Temperature Prediction using a Machine Learning Model-Analog Framework [0.9096537342780928]
Multi-year-to-decadal climate prediction is a key tool in understanding the range of potential regional and global climate futures.<n>We present a framework that combines machine learning and analog forecasting for predictions on these timescales.
arXiv Detail & Related papers (2025-02-24T19:07:39Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
Severe convective storms are among the most dangerous weather phenomena and accurate forecasts mitigate their impacts.
Recently released suite of AI-based weather models produces medium-range forecasts within seconds.
We assess the forecast skill of three top-performing AI-models for convective parameters against reanalysis and ECMWF's operational numerical weather prediction model IFS.
arXiv Detail & Related papers (2024-06-13T07:46:03Z) - Using Deep Learning to Identify Initial Error Sensitivity for Interpretable ENSO Forecasts [0.0]
We introduce an interpretable-by-design method, optimized model-analog, that integrates deep learning with model-analog forecasting.
We evaluate our approach using the Community Earth System Model Version 2 Large Ensemble to forecast the El Nino-Southern Oscillation (ENSO) on a seasonal-to-annual time scale.
Results show a 10% improvement in forecasting equatorial Pacific sea surface temperature anomalies at 9-12 months leads.
arXiv Detail & Related papers (2024-04-23T18:10:18Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Beyond S-curves: Recurrent Neural Networks for Technology Forecasting [60.82125150951035]
We develop an autencoder approach that employs recent advances in machine learning and time series forecasting.
S-curves forecasts largely exhibit a mean average percentage error (MAPE) comparable to a simple ARIMA baseline.
Our autoencoder approach improves the MAPE by 13.5% on average over the second-best result.
arXiv Detail & Related papers (2022-11-28T14:16:22Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.