論文の概要: FoREST: Frame of Reference Evaluation in Spatial Reasoning Tasks
- arxiv url: http://arxiv.org/abs/2502.17775v2
- Date: Thu, 22 May 2025 16:26:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.734266
- Title: FoREST: Frame of Reference Evaluation in Spatial Reasoning Tasks
- Title(参考訳): FoREST:空間推論タスクにおける基準評価の枠組み
- Authors: Tanawan Premsri, Parisa Kordjamshidi,
- Abstract要約: 大規模言語モデル(LLM)におけるFoR理解を評価するために,空間推論タスクにおける参照評価フレーム(FoREST)ベンチマークを導入する。
我々は,FoRESTを用いたテキスト・ツー・イメージモデルにおいて,FoRの理解とレイアウト生成を必要とする質問に対して,LLMを評価した。
その結果,様々なLLMにおけるFORクラス間での顕著な性能差が明らかとなり,テキスト・画像生成のための正確なレイアウトを生成する能力に影響を及ぼすことがわかった。
- 参考スコア(独自算出の注目度): 17.901249830817882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial reasoning is a fundamental aspect of human intelligence. One key concept in spatial cognition is the Frame of Reference (FoR), which identifies the perspective of spatial expressions. Despite its significance, FoR has received limited attention in AI models that need spatial intelligence. There is a lack of dedicated benchmarks and in-depth evaluation of large language models (LLMs) in this area. To address this issue, we introduce the Frame of Reference Evaluation in Spatial Reasoning Tasks (FoREST) benchmark, designed to assess FoR comprehension in LLMs. We evaluate LLMs on answering questions that require FoR comprehension and layout generation in text-to-image models using FoREST. Our results reveal a notable performance gap across different FoR classes in various LLMs, affecting their ability to generate accurate layouts for text-to-image generation. This highlights critical shortcomings in FoR comprehension. To improve FoR understanding, we propose Spatial-Guided prompting, which improves LLMs ability to extract essential spatial concepts. Our proposed method improves overall performance across spatial reasoning tasks.
- Abstract(参考訳): 空間的推論は人間の知性の基本的側面である。
空間認知における重要な概念の1つは参照フレーム(FoR)であり、空間表現の視点を識別する。
その重要性にもかかわらず、FoRは空間知性を必要とするAIモデルに限定的に注目されている。
この領域には専用のベンチマークや大規模言語モデル(LLM)の詳細な評価が欠けている。
この問題に対処するために、LLMにおけるFoR理解を評価するために設計された、空間推論タスク(FoREST)ベンチマークの参照評価フレームを導入する。
我々は,FoRESTを用いたテキスト・ツー・イメージモデルにおいて,FoRの理解とレイアウト生成を必要とする質問に対して,LLMを評価した。
その結果,様々なLLMにおけるFORクラス間での顕著な性能差が明らかとなり,テキスト・画像生成のための正確なレイアウトを生成する能力に影響を及ぼすことがわかった。
これはFoR理解における重大な欠点を浮き彫りにする。
FoR理解を改善するために,LLMの空間概念抽出能力を向上させるSpatial-Guided promptingを提案する。
提案手法は空間推論タスク全体の性能を向上する。
関連論文リスト
- Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
本稿では,まず空間的推論のコア要素を記述した詳細な分析を行う。
次に、これらのモデルの性能を、合成画像と実画像の両方で評価する。
論文 参考訳(メタデータ) (2025-03-25T14:34:06Z) - Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas [52.478956204238315]
機械的解釈可能性のレンズによる空間的推論の課題について検討する。
空間的推論の成功は、実際の物体の位置と注意を一致させるモデルの能力と強く相関している。
本研究の目的は,ADAPTVISを用いて,信頼性の高い地域への注意を喚起することである。
論文 参考訳(メタデータ) (2025-03-03T17:57:03Z) - Retrieval-Augmented Perception: High-Resolution Image Perception Meets Visual RAG [79.61269381878547]
マルチモーダル大言語モデル(MLLM)における高分解能画像認識の課題
本稿では,従来の専門的アプローチから脱却し,MLLMの長文能力を高めることにより,最も基本的な考え方を人事知覚に再考する。
本研究では,空間的コンテキストを保ちながら関連する画像作物を抽出・融合する学習自由フレームワークであるRetrieval-Augmented Perception (RAP)を提案する。
論文 参考訳(メタデータ) (2025-03-03T06:40:21Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
因子関連認知テスト(FRCT)から得られた新しいベンチマークであるVisFactorを紹介する。
VisFactorは視覚関連FRCTサブテストのデジタル化を行い、基本的な視覚認知タスク間でMLLMを体系的に評価する。
GPT-4o, Gemini-Pro, Qwen-VLなどの最先端MLLMの総合評価を行った。
論文 参考訳(メタデータ) (2025-02-23T04:21:32Z) - Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting [40.78026627009521]
強化学習(Reinforcement Learning、RL)は、大規模言語モデル(LLM)知識を逐次意思決定タスクと整合させるための有望なアプローチである。
テキスト環境下でのRL学習後の定式化を促進するために,LLMの感度を解析するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-25T18:25:35Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
画像中の物体間の空間的関係を理解する能力は、視覚的推論の重要な構成要素である。
我々は、以前リリースされたWhat'sUpデータセットを拡張し、空間関係理解のための新しい包括的評価を提案する。
論文 参考訳(メタデータ) (2024-06-19T06:15:26Z) - ReMI: A Dataset for Reasoning with Multiple Images [41.954830849939526]
ReMIは、大規模言語モデルが複数の画像で推論できる能力を評価するために設計されたデータセットである。
このデータセットは、数学、物理学、論理学、コード、表/チャート理解、空間的および時間的推論といった様々な推論領域にまたがる様々なタスクを含んでいる。
我々は,最先端のLDMのベンチマークを行い,その性能と人間レベルの習熟度の間に大きなギャップがあることを発見した。
論文 参考訳(メタデータ) (2024-06-13T14:37:04Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
空間推論は 生物学的と人工知能の両方において 重要な要素です
本稿では,現在最先端の大規模言語モデル (LLM) の空間的推論能力について包括的に検討する。
論文 参考訳(メタデータ) (2024-06-07T01:06:34Z) - RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
MLLM(Multimodal Large Language Models)は、細粒度カテゴリの分類において優れている。
本稿では,MLLMの検索とランク付けのための拡張手法を提案する。
提案手法は, 微粒化認識における固有の限界に対処するだけでなく, モデルの包括的知識基盤も維持する。
論文 参考訳(メタデータ) (2024-03-20T17:59:55Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
IA(Inter-class DiscrepancyAlignment)という統合フレームワークを提案する。
IDA-DAOは、画像と隣人の相違を考慮した類似度スコアの整合に使用される。
IDA-SSEは、GANで生成された仮想候補画像を導入することで、説得力のあるクラス間隣人を提供できます。
論文 参考訳(メタデータ) (2021-03-02T08:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。