論文の概要: ReMI: A Dataset for Reasoning with Multiple Images
- arxiv url: http://arxiv.org/abs/2406.09175v1
- Date: Thu, 13 Jun 2024 14:37:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 17:24:35.018018
- Title: ReMI: A Dataset for Reasoning with Multiple Images
- Title(参考訳): ReMI:複数画像による推論のためのデータセット
- Authors: Mehran Kazemi, Nishanth Dikkala, Ankit Anand, Petar Devic, Ishita Dasgupta, Fangyu Liu, Bahare Fatemi, Pranjal Awasthi, Dee Guo, Sreenivas Gollapudi, Ahmed Qureshi,
- Abstract要約: ReMIは、大規模言語モデルが複数の画像で推論できる能力を評価するために設計されたデータセットである。
このデータセットは、数学、物理学、論理学、コード、表/チャート理解、空間的および時間的推論といった様々な推論領域にまたがる様々なタスクを含んでいる。
我々は,最先端のLDMのベンチマークを行い,その性能と人間レベルの習熟度の間に大きなギャップがあることを発見した。
- 参考スコア(独自算出の注目度): 41.954830849939526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the continuous advancement of large language models (LLMs), it is essential to create new benchmarks to effectively evaluate their expanding capabilities and identify areas for improvement. This work focuses on multi-image reasoning, an emerging capability in state-of-the-art LLMs. We introduce ReMI, a dataset designed to assess LLMs' ability to Reason with Multiple Images. This dataset encompasses a diverse range of tasks, spanning various reasoning domains such as math, physics, logic, code, table/chart understanding, and spatial and temporal reasoning. It also covers a broad spectrum of characteristics found in multi-image reasoning scenarios. We have benchmarked several cutting-edge LLMs using ReMI and found a substantial gap between their performance and human-level proficiency. This highlights the challenges in multi-image reasoning and the need for further research. Our analysis also reveals the strengths and weaknesses of different models, shedding light on the types of reasoning that are currently attainable and areas where future models require improvement. To foster further research in this area, we are releasing ReMI publicly: https://huggingface.co/datasets/mehrankazemi/ReMI.
- Abstract(参考訳): 大規模言語モデル(LLM)の継続的な進歩により、拡張能力を効果的に評価し、改善すべき領域を特定するために、新しいベンチマークを作成することが不可欠である。
この研究は、最先端のLLMにおける新たな能力であるマルチイメージ推論に焦点を当てている。
本稿では,複数画像を用いたLLMの推論能力を評価するためのデータセットであるReMIを紹介する。
このデータセットは、数学、物理学、論理学、コード、表/チャート理解、空間的および時間的推論といった様々な推論領域にまたがる様々なタスクを含んでいる。
また、マルチイメージ推論のシナリオで見られる幅広い特徴についてもカバーしている。
我々はReMIを用いていくつかの最先端LCMのベンチマークを行い、その性能と人間レベルの習熟度の間に大きなギャップがあることを発見した。
これは、マルチイメージ推論の課題と、さらなる研究の必要性を強調している。
私たちの分析では、異なるモデルの長所と短所を明らかにし、現在達成可能な推論のタイプと、将来のモデルが改善を必要とする領域に光を当てています。
この分野のさらなる研究を促進するため、私たちはReMIを公開しています。
関連論文リスト
- An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models [56.537253374781876]
LMM(Large Multimodal Models)は、様々なビジョンや言語タスクにおいて、強力なパフォーマンスを実現している。
しかし、それらの空間的推論能力は未解明である。
我々は,LMMの空間的理解と推論能力を包括的に研究するために,新しいVQAデータセットであるSpatial-MMを構築した。
論文 参考訳(メタデータ) (2024-11-09T03:07:33Z) - ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom [42.03770972100087]
本稿ではProReasonという新しいビジュアル推論フレームワークを紹介する。
ProReasonは、マルチランプロアクティブな知覚と分離されたビジョン推論機能を備えている。
実験の結果、ProReasonは既存のマルチステップ推論フレームワークとパッシブピアメソッドの両方より優れていることがわかった。
論文 参考訳(メタデータ) (2024-10-18T03:22:06Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
本稿では,マルチコンテキストの視覚的グラウンド化という新しい視覚的グラウンド化タスクを提案する。
オープンなテキストプロンプトに基づいて、複数の画像にまたがる関心のインスタンスをローカライズすることを目的としている。
我々は20以上の最先端MLLMと基盤モデルをベンチマークし、潜在的にマルチコンテキストの視覚的グラウンド化機能を有する。
論文 参考訳(メタデータ) (2024-10-16T07:52:57Z) - Learning to Ground VLMs without Forgetting [54.033346088090674]
我々は、既存の画像や言語理解スキルを忘れずに、事前訓練されたビジュアル言語モデルに視覚的接地能力を持たせるフレームワークであるLynXを紹介する。
モデルを効果的に訓練するために、私たちはSCouTと呼ばれる高品質な合成データセットを生成します。
我々はLynXを複数のオブジェクト検出および視覚的グラウンド化データセット上で評価し、オブジェクト検出、ゼロショットローカライゼーション、グラウンドド推論において強い性能を示す。
論文 参考訳(メタデータ) (2024-10-14T13:35:47Z) - Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images [19.923665989164387]
我々は,Multimodal Causal Reasoningベンチマーク,すなわち MuCR を提案し,大規模言語モデルに挑戦する。
具体的には,セマンティック因果関係と視覚的手がかりを組み込んだシアム画像を作成するための,プロンプト駆動画像合成手法を提案する。
我々の広範な実験により、現在最先端のVLLMは、我々が期待したようなマルチモーダル因果推論に熟練していないことが明らかとなった。
論文 参考訳(メタデータ) (2024-08-15T12:04:32Z) - MIBench: Evaluating Multimodal Large Language Models over Multiple Images [70.44423964171088]
マルチイメージシナリオにおけるMLLMの微粒化能力を包括的に評価する新しいベンチマークMIBenchを提案する。
具体的には、MIBenchはマルチモーダル・インコンテクスト・ラーニング(MIC)とマルチモーダル・インコンテクスト・ラーニング(MIC)の3つのシナリオに分類する。
その結果、現在のモデルでは単一画像のタスクが優れているが、複数画像の入力に直面すると大きな欠点が現れることがわかった。
論文 参考訳(メタデータ) (2024-07-21T21:22:58Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
画像中の物体間の空間的関係を理解する能力は、視覚的推論の重要な構成要素である。
我々は、以前リリースされたWhat'sUpデータセットを拡張し、空間関係理解のための新しい包括的評価を提案する。
論文 参考訳(メタデータ) (2024-06-19T06:15:26Z) - NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language
Models [34.91372939329467]
MLLMの純粋推論能力を評価するためのベンチマークであるNPHardEval4Vを導入する。
異なるモデルにまたがる推論能力に有意な差が認められた。
また,視覚,テキスト,視覚とテキストの組み合わせがMLLMの推論能力に与える影響についても検討した。
論文 参考訳(メタデータ) (2024-03-04T07:10:31Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。