Exploring the Potential of Large Language Models for Estimating the Reading Comprehension Question Difficulty
- URL: http://arxiv.org/abs/2502.17785v1
- Date: Tue, 25 Feb 2025 02:28:48 GMT
- Title: Exploring the Potential of Large Language Models for Estimating the Reading Comprehension Question Difficulty
- Authors: Yoshee Jain, John Hollander, Amber He, Sunny Tang, Liang Zhang, John Sabatini,
- Abstract summary: This study investigates the effectiveness of Large Language Models (LLMs) in estimating the difficulty of reading comprehension questions.<n>We use OpenAI's GPT-4o and o1, in estimating the difficulty of reading comprehension questions using the Study Aid and Reading Assessment (SARA) dataset.<n>The results indicate that while the models yield difficulty estimates that align meaningfully with derived IRT parameters, there are notable differences in their sensitivity to extreme item characteristics.
- Score: 2.335292678914151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reading comprehension is a key for individual success, yet the assessment of question difficulty remains challenging due to the extensive human annotation and large-scale testing required by traditional methods such as linguistic analysis and Item Response Theory (IRT). While these robust approaches provide valuable insights, their scalability is limited. There is potential for Large Language Models (LLMs) to automate question difficulty estimation; however, this area remains underexplored. Our study investigates the effectiveness of LLMs, specifically OpenAI's GPT-4o and o1, in estimating the difficulty of reading comprehension questions using the Study Aid and Reading Assessment (SARA) dataset. We evaluated both the accuracy of the models in answering comprehension questions and their ability to classify difficulty levels as defined by IRT. The results indicate that, while the models yield difficulty estimates that align meaningfully with derived IRT parameters, there are notable differences in their sensitivity to extreme item characteristics. These findings suggest that LLMs can serve as the scalable method for automated difficulty assessment, particularly in dynamic interactions between learners and Adaptive Instructional Systems (AIS), bridging the gap between traditional psychometric techniques and modern AIS for reading comprehension and paving the way for more adaptive and personalized educational assessments.
Related papers
- Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
We introduce Dialectic-RAG (DRAG), a modular approach that evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives.
We show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models.
arXiv Detail & Related papers (2025-04-07T06:55:15Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
We propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL)
It employs self-generated natural language critiques as feedback to guide the step-level search process.
This approach bypasses the need for task-specific verifiers and the associated training overhead.
arXiv Detail & Related papers (2025-03-21T17:59:55Z) - DAST: Difficulty-Aware Self-Training on Large Language Models [68.30467836807362]
Large Language Models (LLM) self-training methods always under-sample on challenging queries.
This work proposes a difficulty-aware self-training framework that focuses on improving the quantity and quality of self-generated responses.
arXiv Detail & Related papers (2025-03-12T03:36:45Z) - How Good is ChatGPT in Giving Adaptive Guidance Using Knowledge Graphs in E-Learning Environments? [0.8999666725996978]
This study introduces an approach that integrates dynamic knowledge graphs with large language models (LLMs) to offer nuanced student assistance.
Central to this method is the knowledge graph's role in assessing a student's comprehension of topic prerequisites.
Preliminary findings suggest students could benefit from this tiered support, achieving enhanced comprehension and improved task outcomes.
arXiv Detail & Related papers (2024-12-05T04:05:43Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Leveraging Prompts in LLMs to Overcome Imbalances in Complex Educational Text Data [1.8280573037181356]
We explore the potential of Large Language Models (LLMs) with assertions to mitigate imbalances in educational datasets.
This issue is especially prominent in the education sector, where cognitive engagement levels among students show significant variation in their open responses.
arXiv Detail & Related papers (2024-04-28T00:24:08Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
We introduce OPEN, a framework that uses BOED to guide the choice of informative questions and an LM to extract features.
In user studies, we find that OPEN outperforms existing LM- and BOED-based methods for preference elicitation.
arXiv Detail & Related papers (2024-03-08T18:57:52Z) - Puzzle Solving using Reasoning of Large Language Models: A Survey [1.9939549451457024]
This survey examines the capabilities of Large Language Models (LLMs) in puzzle solving.
Our findings highlight the disparity between LLM capabilities and human-like reasoning.
The survey underscores the necessity for novel strategies and richer datasets to advance LLMs' puzzle-solving proficiency.
arXiv Detail & Related papers (2024-02-17T14:19:38Z) - Difficulty-Focused Contrastive Learning for Knowledge Tracing with a
Large Language Model-Based Difficulty Prediction [2.8946115982002443]
This paper presents novel techniques for enhancing the performance of knowledge tracing (KT) models by focusing on the crucial factor of question and concept difficulty level.
We propose a difficulty-centered contrastive learning method for KT models and a Large Language Model (LLM)-based framework for difficulty prediction.
arXiv Detail & Related papers (2023-12-19T06:26:25Z) - Context Matters: Data-Efficient Augmentation of Large Language Models
for Scientific Applications [15.893290942177112]
We explore the challenges inherent to Large Language Models (LLMs) like GPT-4.
The capacity of LLMs to present erroneous answers in a coherent and semantically rigorous manner complicates the detection of factual inaccuracies.
Our work aims to enhance the understanding and mitigation of such errors, thereby contributing to the improvement of LLM accuracy and reliability.
arXiv Detail & Related papers (2023-12-12T08:43:20Z) - SOUL: Towards Sentiment and Opinion Understanding of Language [96.74878032417054]
We propose a new task called Sentiment and Opinion Understanding of Language (SOUL)
SOUL aims to evaluate sentiment understanding through two subtasks: Review (RC) and Justification Generation (JG)
arXiv Detail & Related papers (2023-10-27T06:48:48Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.