Weakly Supervised Pixel-Level Annotation with Visual Interpretability
- URL: http://arxiv.org/abs/2502.17824v1
- Date: Tue, 25 Feb 2025 04:03:22 GMT
- Title: Weakly Supervised Pixel-Level Annotation with Visual Interpretability
- Authors: Basma Nasir, Tehseen Zia, Muhammad Nawaz, Catarina Moreira,
- Abstract summary: We propose an automated explainable annotation system that integrates ensemble learning, visual explainability, and uncertainty quantification.<n>Our approach combines three pre-trained deep learning models - ResNet50, EfficientNet, and DenseNet - enhanced with XGrad-CAM for visual explanations and Monte Carlo Dropout for uncertainty quantification.<n> Experimental results show that our method outperforms baseline models, achieving 93.04% accuracy on TBX11K and 96.4% accuracy on the Fire dataset.
- Score: 1.5035157506526693
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Medical image annotation is essential for diagnosing diseases, yet manual annotation is time-consuming, costly, and prone to variability among experts. To address these challenges, we propose an automated explainable annotation system that integrates ensemble learning, visual explainability, and uncertainty quantification. Our approach combines three pre-trained deep learning models - ResNet50, EfficientNet, and DenseNet - enhanced with XGrad-CAM for visual explanations and Monte Carlo Dropout for uncertainty quantification. This ensemble mimics the consensus of multiple radiologists by intersecting saliency maps from models that agree on the diagnosis while uncertain predictions are flagged for human review. We evaluated our system using the TBX11K medical imaging dataset and a Fire segmentation dataset, demonstrating its robustness across different domains. Experimental results show that our method outperforms baseline models, achieving 93.04% accuracy on TBX11K and 96.4% accuracy on the Fire dataset. Moreover, our model produces precise pixel-level annotations despite being trained with only image-level labels, achieving Intersection over Union IoU scores of 36.07% and 64.7%, respectively. By enhancing the accuracy and interpretability of image annotations, our approach offers a reliable and transparent solution for medical diagnostics and other image analysis tasks.
Related papers
- DCAT: Dual Cross-Attention Fusion for Disease Classification in Radiological Images with Uncertainty Estimation [0.0]
This paper proposes a novel dual cross-attention fusion model for medical image analysis.
It addresses key challenges in feature integration and interpretability.
The proposed model achieved AUC of 99.75%, 100%, 99.93% and 98.69% and AUPR of 99.81%, 100%, 99.97%, and 96.36% on Covid-19, Tuberculosis, Pneumonia Chest X-ray images and Retinal OCT images respectively.
arXiv Detail & Related papers (2025-03-14T20:28:20Z) - Fine-tuning Vision Language Models with Graph-based Knowledge for Explainable Medical Image Analysis [44.38638601819933]
Current staging models for Diabetic Retinopathy (DR) are hardly interpretable.
We present a novel method that integrates graph representation learning with vision-language models (VLMs) to deliver explainable DR diagnosis.
arXiv Detail & Related papers (2025-03-12T20:19:07Z) - Multi-task Learning Approach for Intracranial Hemorrhage Prognosis [0.0]
We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability.
Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input.
arXiv Detail & Related papers (2024-08-16T14:56:17Z) - Learning Generalized Medical Image Representations through Image-Graph Contrastive Pretraining [11.520404630575749]
We develop an Image-Graph Contrastive Learning framework that pairs chest X-rays with structured report knowledge graphs automatically extracted from radiology notes.
Our approach uniquely encodes the disconnected graph components via a relational graph convolution network and transformer attention.
arXiv Detail & Related papers (2024-05-15T12:27:38Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - FeaInfNet: Diagnosis in Medical Image with Feature-Driven Inference and
Visual Explanations [4.022446255159328]
Interpretable deep learning models have received widespread attention in the field of image recognition.
Many interpretability models that have been proposed still have problems of insufficient accuracy and interpretability in medical image disease diagnosis.
We propose feature-driven inference network (FeaInfNet) to solve these problems.
arXiv Detail & Related papers (2023-12-04T13:09:00Z) - Graph Self-Supervised Learning for Endoscopic Image Matching [1.8275108630751844]
We propose a novel self-supervised approach that combines Convolutional Neural Networks for capturing local visual appearance and attention-based Graph Neural Networks for modeling spatial relationships between key-points.
Our approach is trained in a fully self-supervised scheme without the need for labeled data.
Our approach outperforms state-of-the-art handcrafted and deep learning-based methods, demonstrating exceptional performance in terms of precision rate (1) and matching score (99.3%)
arXiv Detail & Related papers (2023-06-19T19:53:41Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.