論文の概要: Dual Classification Head Self-training Network for Cross-scene Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2502.17879v1
- Date: Tue, 25 Feb 2025 06:07:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:22:18.267426
- Title: Dual Classification Head Self-training Network for Cross-scene Hyperspectral Image Classification
- Title(参考訳): クロスシーンハイパースペクトル画像分類のための二重分類ヘッド自己学習ネットワーク
- Authors: Rong Liu, Junye Liang, Jiaqi Yang, Jiang He, Peng Zhu,
- Abstract要約: リモートセンシングコミュニティでは,クロスシーンの分類が広く採用されている。
SDとTDの反射スペクトルの変化と,同じ土地被覆クラスの特徴分布の違いは,クロスシーン分類の性能に重大な課題をもたらす。
クロスステージなHSI分類分野において、初めて二元分類頭部自己学習戦略を導入する。
- 参考スコア(独自算出の注目度): 7.482363472369229
- License:
- Abstract: Due to the difficulty of obtaining labeled data for hyperspectral images (HSIs), cross-scene classification has emerged as a widely adopted approach in the remote sensing community. It involves training a model using labeled data from a source domain (SD) and unlabeled data from a target domain (TD), followed by inferencing on the TD. However, variations in the reflectance spectrum of the same object between the SD and the TD, as well as differences in the feature distribution of the same land cover class, pose significant challenges to the performance of cross-scene classification. To address this issue, we propose a dual classification head self-training network (DHSNet). This method aligns class-wise features across domains, ensuring that the trained classifier can accurately classify TD data of different classes. We introduce a dual classification head self-training strategy for the first time in the cross-scene HSI classification field. The proposed approach mitigates domain gap while preventing the accumulation of incorrect pseudo-labels in the model. Additionally, we incorporate a novel central feature attention mechanism to enhance the model's capacity to learn scene-invariant features across domains. Experimental results on three cross-scene HSI datasets demonstrate that the proposed DHSNET significantly outperforms other state-of-the-art approaches. The code for DHSNet will be available at https://github.com/liurongwhm.
- Abstract(参考訳): ハイパースペクトル画像(HSI)のラベル付きデータを得るのが難しいため、リモートセンシングコミュニティにおいて、クロスシーン分類が広く採用されている。
ソースドメイン(SD)からのラベル付きデータとターゲットドメイン(TD)からのラベルなしデータを使用してモデルをトレーニングし、TD上で参照する。
しかし,同じ対象物とTDの反射スペクトルの変動と,同じ土地被覆クラスの特徴分布の違いは,クロスシーン分類の性能に重大な課題をもたらす。
この問題に対処するために、二元分類ヘッド自己学習ネットワーク(DHSNet)を提案する。
このメソッドはドメイン間でクラスワイズ機能を調整し、訓練済みの分類器が異なるクラスのTDデータを正確に分類できるようにする。
クロスステージなHSI分類分野において、初めて二元分類頭部自己学習戦略を導入する。
提案手法は, モデル内の誤った擬似ラベルの蓄積を防止しつつ, ドメインギャップを緩和する。
さらに、ドメイン間のシーン不変の特徴を学習するモデルの能力を高めるために、新しい中心的特徴注意機構を組み込んだ。
3つのクロスステージなHSIデータセットの実験結果から、提案したDHSNETは、他の最先端のアプローチよりも大幅に優れていることが示された。
DHSNetのコードはhttps://github.com/liurongwhm.comで入手できる。
関連論文リスト
- EIANet: A Novel Domain Adaptation Approach to Maximize Class Distinction with Neural Collapse Principles [15.19374752514876]
ソースフリードメイン適応(SFDA)は、ラベル付きソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
SFDAにおける大きな課題は、ターゲットドメインの正確な分類情報を導き出すことである。
クラスプロトタイプを分離するための新しいETF-Informed Attention Network(EIANet)を導入する。
論文 参考訳(メタデータ) (2024-07-23T05:31:05Z) - CDAD-Net: Bridging Domain Gaps in Generalized Category Discovery [9.505699498746976]
Generalized Category Discovery (GCD)は、既知のクラスと新しいクラスのラベルのないサンプルをクラスタリングするツールである。
本稿では、Across Domain Generalized Category Discovery (AD-GCD)を紹介し、CDAD-NETを治療として提供する。
CDAD-NETは、ラベル付き(ソース)データセットとラベルなし(ターゲット)データセットの両方で、既知の潜在的なクラスサンプルを同期するように設計されている。
実験により、CDAD-NETは既存の文献を8~15%上回り、AD-GCDベンチマークを3つのベンチマークで比較した。
論文 参考訳(メタデータ) (2024-04-08T10:05:24Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
きめ細かい画像認識は、長年続くコンピュータビジョンの課題である。
本稿では,識別領域損失問題を軽減するため,特徴レベルのトレーニングデータを多様化することを提案する。
本手法は,いくつかの人気分類ネットワーク上での一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-01T11:15:50Z) - Cross-Domain Few-Shot Classification via Inter-Source Stylization [11.008292768447614]
Cross-Domain Few-Shot Classification (CDFSC)は、限られたラベル付きデータでターゲットデータセットを正確に分類することである。
本稿では、追加のラベル付けコストを必要とせずに複数のソースドメインを利用するソリューションを提案する。
論文 参考訳(メタデータ) (2022-08-17T01:44:32Z) - Distribution Regularized Self-Supervised Learning for Domain Adaptation
of Semantic Segmentation [3.284878354988896]
本稿では,セマンティックセグメンテーションの自己教師付きドメイン適応のための画素レベル分布正規化スキーム(DRSL)を提案する。
典型的な環境では、分類損失はセマンティックセグメンテーションモデルにクラス間のバリエーションをキャプチャする表現を欲しがらせるように強制する。
クラス認識型マルチモーダル分布学習により,ピクセルレベルのクラス内変動を捉える。
論文 参考訳(メタデータ) (2022-06-20T09:52:49Z) - Cycle Label-Consistent Networks for Unsupervised Domain Adaptation [57.29464116557734]
ドメイン適応は、ラベル付きソースドメインを活用して、異なる分布を持つラベル付きターゲットドメインの分類子を学ぶことを目的としています。
本稿では,分類ラベルのサイクル整合性を利用して,シンプルで効率的な領域適応手法,すなわちCycle Label-Consistent Network (CLCN)を提案する。
MNIST-USPS-SVHN, Office-31, Office-Home, Image CLEF-DAベンチマークに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-05-27T13:09:08Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
本稿では,局所的なワンホット分類とグローバルなマルチクラス分類を組み合わせることで,視覚的・時間的整合性を両立させる。
3つの大規模ReIDデータセットの実験結果は、教師なしと教師なしの両方のドメイン適応型ReIDタスクにおいて提案手法の優位性を示す。
論文 参考訳(メタデータ) (2020-07-21T14:31:27Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。