論文の概要: RankCoT: Refining Knowledge for Retrieval-Augmented Generation through Ranking Chain-of-Thoughts
- arxiv url: http://arxiv.org/abs/2502.17888v1
- Date: Tue, 25 Feb 2025 06:18:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 18:41:03.864289
- Title: RankCoT: Refining Knowledge for Retrieval-Augmented Generation through Ranking Chain-of-Thoughts
- Title(参考訳): RankCoT: ランキング・オブ・ソートによる検索強化世代のための知識の洗練
- Authors: Mingyan Wu, Zhenghao Liu, Yukun Yan, Xinze Li, Shi Yu, Zheni Zeng, Yu Gu, Ge Yu,
- Abstract要約: RankCoTは、CoTをベースとした要約生成において、再ランク信号を含む知識改善手法である。
実験では,RangCoTの有効性を実証し,他の知識改善モデルよりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 23.383151362974488
- License:
- Abstract: Retrieval-Augmented Generation (RAG) enhances the performance of Large Language Models (LLMs) by incorporating external knowledge. However, LLMs still encounter challenges in effectively utilizing the knowledge from retrieved documents, often being misled by irrelevant or noisy information. To address this issue, we introduce RankCoT, a knowledge refinement method that incorporates reranking signals in generating CoT-based summarization for knowledge refinement based on given query and all retrieval documents. During training, RankCoT prompts the LLM to generate Chain-of-Thought (CoT) candidates based on the query and individual documents. It then fine-tunes the LLM to directly reproduce the best CoT from these candidate outputs based on all retrieved documents, which requires LLM to filter out irrelevant documents during generating CoT-style summarization. Additionally, RankCoT incorporates a self-reflection mechanism that further refines the CoT outputs, resulting in higher-quality training data. Our experiments demonstrate the effectiveness of RankCoT, showing its superior performance over other knowledge refinement models. Further analysis reveals that RankCoT can provide shorter but effective refinement results, enabling the generator to produce more accurate answers. All code and data are available at https://github.com/NEUIR/RankCoT.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、外部知識を取り入れた大規模言語モデル(LLM)の性能を向上させる。
しかし、LLMは検索した文書からの知識を効果的に活用する上での課題に直面しており、しばしば無関係または騒々しい情報によって誤解される。
この問題に対処するために、与えられたクエリと全ての検索文書に基づいて知識精算のためのCoTに基づく要約を生成するために、リグレード信号を組み込んだ知識精算手法であるRandonCoTを導入する。
RankCoTはトレーニング中に、クエリと個々のドキュメントに基づいて、LCMにChain-of-Thought(CoT)候補を生成するように促す。
次に、LLMを微調整して、全ての検索された文書に基づいて、これらの候補出力から最良のCoTを直接再現し、これは、CoTスタイルの要約を生成する際に、無関係な文書をフィルタリングする必要がある。
さらにRangCoTには、CoT出力をさらに洗練し、高品質なトレーニングデータをもたらす自己回帰機構が組み込まれている。
実験では,RangCoTの有効性を実証し,他の知識改善モデルよりも優れた性能を示した。
さらなる分析により、RangCoTは短いが効果的な改善結果を提供し、ジェネレータがより正確な答えを生成できることが判明した。
すべてのコードとデータはhttps://github.com/NEUIR/RankCoT.comで入手できる。
関連論文リスト
- SnipGen: A Mining Repository Framework for Evaluating LLMs for Code [51.07471575337676]
言語モデル(LLM)は、コードリポジトリを含む広範なデータセットに基づいてトレーニングされる。
それらの有効性を評価することは、トレーニングに使用されるデータセットと評価に使用されるデータセットとが重複する可能性があるため、大きな課題となる。
SnipGenは、コード生成のために、様々な下流タスクをまたいだ迅速なエンジニアリングを活用するように設計された包括的なリポジトリマイニングフレームワークである。
論文 参考訳(メタデータ) (2025-02-10T21:28:15Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - RRADistill: Distilling LLMs' Passage Ranking Ability for Long-Tail Queries Document Re-Ranking on a Search Engine [2.0379810233726126]
大規模言語モデル(LLM)は、クエリとドキュメント間の意味的関係を理解するのに優れている。
これらのクエリは、少ないユーザエンゲージメントと限られたフィードバックのため、フィードバックベースのランキングでは難しい。
本稿では,エンコーダモデルとデコーダモデルの両方に対して,効率的なラベル生成パイプラインと新しいsLLMトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-10-08T11:28:06Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
まず、第1生成識別子の出力ロジットを活用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチであるFIRSTを紹介する。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
以上の結果から,LLMリランカーはクロスエンコーダに比べて強い蒸留信号を提供できることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T21:27:50Z) - Cocktail: A Comprehensive Information Retrieval Benchmark with LLM-Generated Documents Integration [60.535793237063885]
LLM(Large Language Models)の普及は、インターネット上のAIGC(AIGC)の流入につながっている。
AIGCの急増が情報検索システムに与える影響は、まだ明らかな疑問である。
我々は、この混合ソースデータランドスケープでIRモデルを評価するのに適したベンチマークであるCocktailを紹介した。
論文 参考訳(メタデータ) (2024-05-26T12:30:20Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Knowledge-Driven CoT: Exploring Faithful Reasoning in LLMs for
Knowledge-intensive Question Answering [17.672572064705445]
CoT(Chain-of-Thought)を備えた大規模言語モデル(LLM)は、様々な下流タスクにおいて顕著な推論能力を示している。
我々は、外部知識との相互作用を通じてCoTの推論トレースを検証・修正する、KD-CoT(Knowled-Driven Chain-of-Thought)というフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-25T09:23:55Z) - Element-aware Summarization with Large Language Models: Expert-aligned
Evaluation and Chain-of-Thought Method [35.181659789684545]
自動要約は、ソースドキュメントのキーアイデアを含む簡潔な要約を生成する。
CNN/DailyMailやBBC XSumからの引用は、主に幻覚と情報冗長性の点で騒々しい。
本稿では,LCMを段階的に生成するためにSumCoT(Slide Chain-of-Thought)手法を提案する。
実験結果から, ROUGE-L では, 最先端の微調整 PLM とゼロショット LLM を+4.33/+4.77 で上回った。
論文 参考訳(メタデータ) (2023-05-22T18:54:35Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
本稿では,タスク固有の学習データを用いることなく,言語モデル(LRL)を用いたリスワイズ・リランカを提案する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段再ランカとしても機能することが示された。
論文 参考訳(メタデータ) (2023-05-03T14:45:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。