論文の概要: Knowledge-enhanced Multimodal ECG Representation Learning with Arbitrary-Lead Inputs
- arxiv url: http://arxiv.org/abs/2502.17900v1
- Date: Tue, 25 Feb 2025 06:53:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:22:48.476398
- Title: Knowledge-enhanced Multimodal ECG Representation Learning with Arbitrary-Lead Inputs
- Title(参考訳): 任意値入力による知識強化型マルチモーダルECG表現学習
- Authors: Che Liu, Cheng Ouyang, Zhongwei Wan, Haozhe Wang, Wenjia Bai, Rossella Arcucci,
- Abstract要約: **K-MERL*は知識に富んだマルチモーダルECG表現学習フレームワークである。
自由テキストレポートから構造化知識を抽出し、動的リードマスキングを備えたリード対応ECGエンコーダを使用する。
ゼロショット分類および線形探索タスクにおける最先端性能を達成する。
- 参考スコア(独自算出の注目度): 10.722157583640076
- License:
- Abstract: Recent advances in multimodal ECG representation learning center on aligning ECG signals with paired free-text reports. However, suboptimal alignment persists due to the complexity of medical language and the reliance on a full 12-lead setup, which is often unavailable in under-resourced settings. To tackle these issues, we propose **K-MERL**, a knowledge-enhanced multimodal ECG representation learning framework. **K-MERL** leverages large language models to extract structured knowledge from free-text reports and employs a lead-aware ECG encoder with dynamic lead masking to accommodate arbitrary lead inputs. Evaluations on six external ECG datasets show that **K-MERL** achieves state-of-the-art performance in zero-shot classification and linear probing tasks, while delivering an average **16%** AUC improvement over existing methods in partial-lead zero-shot classification.
- Abstract(参考訳): マルチモーダルECG表現学習センターの最近の進歩 : ペア自由テキストレポートとECG信号の整合性
しかし、医療言語の複雑さと、リソース不足の環境ではしばしば利用できない、フル12リードのセットアップに依存しているため、最適以下のアライメントは継続する。
これらの課題に対処するため,知識に富んだマルチモーダルECG表現学習フレームワーク**K-MERL*を提案する。
**K-MERL*は、大規模言語モデルを活用して、自由テキストレポートから構造化知識を抽出し、動的リードマスキングを備えたリード対応ECGエンコーダを用いて任意のリード入力を許容する。
6つの外部ECGデータセットの評価によると、**K-MERL*はゼロショット分類と線形探索タスクにおいて最先端のパフォーマンスを達成する一方で、部分リードゼロショット分類における既存の手法よりも平均***16%*AUCの改善を提供する。
関連論文リスト
- CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text [14.06147507373525]
本研究は,12誘導ECG信号の学習表現の品質とロバスト性の向上を目的とした,新しいマルチモーダルコントラスト保持フレームワークを提案する。
私たちのフレームワークは、Cardio Query Assistant(CQA)とECG Semantics Integrator(ESI)の2つの重要なコンポーネントで構成されています。
論文 参考訳(メタデータ) (2024-05-26T06:45:39Z) - Tokenization, Fusion, and Augmentation: Towards Fine-grained Multi-modal Entity Representation [51.80447197290866]
マルチモーダル知識グラフ補完(MMKGC)は、与えられた知識グラフから観測されていない知識を発見することを目的としている。
既存のMMKGCメソッドは通常、事前訓練されたモデルでマルチモーダルな特徴を抽出する。
エンティティの微細なマルチモーダル表現をトークン化し、融合し、拡張する新しいフレームワークであるMyGOを紹介します。
論文 参考訳(メタデータ) (2024-04-15T05:40:41Z) - Zero-Shot ECG Classification with Multimodal Learning and Test-time Clinical Knowledge Enhancement [10.611952462532908]
マルチモーダルECG表現学習(MERL)は、テキストプロンプトでゼロショットECG分類を行うことができる。
本稿では,外部の専門知識データベースを利用した臨床知識向上技術(CKEPE)アプローチを提案する。
MERLは、ゼロショット分類における平均75.2%のAUCスコアを(トレーニングデータなしで)達成し、10%の注釈付きトレーニングデータを持つ線形プローブeSSLメソッドよりも3.2%高い。
論文 参考訳(メタデータ) (2024-03-11T12:28:55Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Multi-perspective Improvement of Knowledge Graph Completion with Large
Language Models [95.31941227776711]
我々は,文脈知識の不足を補うMPIKGCを提案し,大規模言語モデル(LLM)をクエリすることでKGCを改善する。
我々は4つの記述に基づくKGCモデルと4つのデータセットに基づくフレームワークの広範囲な評価を行い、リンク予測とトリプルト分類のタスクについて検討した。
論文 参考訳(メタデータ) (2024-03-04T12:16:15Z) - Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward
Comprehensive Benchmarks [60.82579717007963]
本稿では,グラフコントラスト学習(GCL)手法の有効性,一貫性,全体的な能力をより正確に評価するために,拡張された評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-24T01:47:56Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - ETP: Learning Transferable ECG Representations via ECG-Text Pre-training [10.856365645831728]
ECG-Text Pre-training (ETP)は、ECG信号とテキストレポートをリンクするクロスモーダル表現を学習するために設計された革新的なフレームワークである。
ETPはECGエンコーダと事前訓練された言語モデルを使用して、ECG信号を対応するテキストレポートと整合させる。
論文 参考訳(メタデータ) (2023-09-06T19:19:26Z) - Inductive Learning on Commonsense Knowledge Graph Completion [89.72388313527296]
コモンセンス知識グラフ(英: Commonsense Knowledge graph、CKG)は、知識グラフ(英: knowledge graph、CKG)の一種。
本稿では,未確認のエンティティがテスト時に現れるCKG完了のための帰納学習環境について検討する。
InductivEは、ATOMICとConceptNetベンチマークの標準設定とインダクティブ設定の両方において、最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2020-09-19T16:10:26Z) - MLBF-Net: A Multi-Lead-Branch Fusion Network for Multi-Class Arrhythmia
Classification Using 12-Lead ECG [18.008404374681863]
不整脈分類のための新しいMulti-Lead-Branch Fusion Network (MLBF-Net) アーキテクチャを提案する。
MLBF-Netは,1)マルチリードECGの多様性を学習する複数のリード固有ブランチ,2)マルチリードECGの完全性を学ぶために,すべてのブランチの出力特徴マップを連結して融合するクロスリード機能,の3つのコンポーネントで構成されている。
論文 参考訳(メタデータ) (2020-08-17T12:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。