論文の概要: ETP: Learning Transferable ECG Representations via ECG-Text Pre-training
- arxiv url: http://arxiv.org/abs/2309.07145v1
- Date: Wed, 6 Sep 2023 19:19:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-17 13:39:24.356896
- Title: ETP: Learning Transferable ECG Representations via ECG-Text Pre-training
- Title(参考訳): ETP:ECG-Textプレトレーニングによる伝達可能なECG表現の学習
- Authors: Che Liu, Zhongwei Wan, Sibo Cheng, Mi Zhang, Rossella Arcucci
- Abstract要約: ECG-Text Pre-training (ETP)は、ECG信号とテキストレポートをリンクするクロスモーダル表現を学習するために設計された革新的なフレームワークである。
ETPはECGエンコーダと事前訓練された言語モデルを使用して、ECG信号を対応するテキストレポートと整合させる。
- 参考スコア(独自算出の注目度): 10.856365645831728
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the domain of cardiovascular healthcare, the Electrocardiogram (ECG)
serves as a critical, non-invasive diagnostic tool. Although recent strides in
self-supervised learning (SSL) have been promising for ECG representation
learning, these techniques often require annotated samples and struggle with
classes not present in the fine-tuning stages. To address these limitations, we
introduce ECG-Text Pre-training (ETP), an innovative framework designed to
learn cross-modal representations that link ECG signals with textual reports.
For the first time, this framework leverages the zero-shot classification task
in the ECG domain. ETP employs an ECG encoder along with a pre-trained language
model to align ECG signals with their corresponding textual reports. The
proposed framework excels in both linear evaluation and zero-shot
classification tasks, as demonstrated on the PTB-XL and CPSC2018 datasets,
showcasing its ability for robust and generalizable cross-modal ECG feature
learning.
- Abstract(参考訳): 心臓血管医療の分野では、心電図(ECG)は重要な非侵襲的診断ツールとして機能する。
近年の自己教師型学習(SSL)の進歩はECG表現学習に有望であるが,これらの手法は注釈付きサンプルを必要とすることが多く,微調整段階には存在しないクラスとの闘いも少なくない。
これらの制約に対処するために、ECG信号とテキストレポートをリンクするクロスモーダル表現を学習するための革新的なフレームワークであるECG-Text Pre-training (ETP)を導入する。
このフレームワークはECGドメインのゼロショット分類タスクを初めて活用する。
ETPはECGエンコーダと事前訓練された言語モデルを使用して、ECG信号を対応するテキストレポートと整合させる。
PTB-XLとCPSC2018データセットで示されたように、提案フレームワークは線形評価とゼロショット分類の両方に優れており、堅牢で一般化可能なクロスモーダルECG特徴学習能力を示している。
関連論文リスト
- Reading Your Heart: Learning ECG Words and Sentences via Pre-training ECG Language Model [25.131870247201636]
我々は心電図信号の新たな視点を導入し、心拍を単語として扱い、リズムを文として扱う。
次に、ECG言語処理のための新しい自己教師型学習フレームワークHeartLangを提案する。
これまでで最大の心拍ベースの心電図語彙を構築し、心電図言語処理の開発をさらに進める。
論文 参考訳(メタデータ) (2025-02-15T07:40:57Z) - ECG-Byte: A Tokenizer for End-to-End Generative Electrocardiogram Language Modeling [20.484166589932702]
ECG-Byteは、ECGの自動回帰言語モデリングのためのトークン化パイプラインである。
ECG信号をトークンに圧縮してエンコードし、エンドツーエンドの大規模言語モデルのトレーニングを可能にする。
NLGタスクの競合性能は,2段階のアプローチで要求されるデータの半分と48%に過ぎません。
論文 参考訳(メタデータ) (2024-12-18T22:13:21Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - Learning General Representation of 12-Lead Electrocardiogram with a Joint-Embedding Predictive Architecture [0.0]
本稿では,12誘導ECG分析のための自己教師型学習モデルECG-JEPAを紹介する。
隠れた潜在空間で予測することで、ECGデータのセマンティック表現を学習する。
ECG-JEPAは、ECG分類や特徴予測を含む様々な下流タスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-11T06:30:48Z) - ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text [14.06147507373525]
本研究は,12誘導ECG信号の学習表現の品質とロバスト性の向上を目的とした,新しいマルチモーダルコントラスト保持フレームワークを提案する。
私たちのフレームワークは、Cardio Query Assistant(CQA)とECG Semantics Integrator(ESI)の2つの重要なコンポーネントで構成されています。
論文 参考訳(メタデータ) (2024-05-26T06:45:39Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder [69.7813498468116]
コントラスト型脳波テキストマスケード自動エンコーダ(CET-MAE)を提案する。
また、E2T-PTR(Pretrained Transferable Representationsを用いたEEG-to-Text decoding)と呼ばれるフレームワークを開発し、EEGシーケンスからテキストをデコードする。
論文 参考訳(メタデータ) (2024-02-27T11:45:21Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
本稿では,ECG信号の周期的性質をモデル化する新しいECG-Segment Based Learning (ECG-SL) フレームワークを提案する。
この構造的特徴に基づき, 時間的モデルを用いて, 各種臨床業務の時間的情報学習を行う。
提案手法はベースラインモデルより優れ,3つの臨床応用におけるタスク固有手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:17:55Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Inductive Learning on Commonsense Knowledge Graph Completion [89.72388313527296]
コモンセンス知識グラフ(英: Commonsense Knowledge graph、CKG)は、知識グラフ(英: knowledge graph、CKG)の一種。
本稿では,未確認のエンティティがテスト時に現れるCKG完了のための帰納学習環境について検討する。
InductivEは、ATOMICとConceptNetベンチマークの標準設定とインダクティブ設定の両方において、最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2020-09-19T16:10:26Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。