Structure-prior Informed Diffusion Model for Graph Source Localization with Limited Data
- URL: http://arxiv.org/abs/2502.17928v1
- Date: Tue, 25 Feb 2025 07:47:22 GMT
- Title: Structure-prior Informed Diffusion Model for Graph Source Localization with Limited Data
- Authors: Hongyi Chen, Jingtao Ding, Xiaojun Liang, Yong Li, Xiao-Ping Zhang,
- Abstract summary: This paper introduces SIDSL, a novel framework that addresses three key challenges in limited-data scenarios.<n> SIDSL incorporates topology-aware priors through graph label propagation and employs a propagation-enhanced conditional denoiser.<n> Experimental results across four real-world datasets demonstrate SIDSL's superior performance.
- Score: 13.443269048443627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The source localization problem in graph information propagation is crucial for managing various network disruptions, from misinformation spread to infrastructure failures. While recent deep generative approaches have shown promise in this domain, their effectiveness is limited by the scarcity of real-world propagation data. This paper introduces SIDSL (\textbf{S}tructure-prior \textbf{I}nformed \textbf{D}iffusion model for \textbf{S}ource \textbf{L}ocalization), a novel framework that addresses three key challenges in limited-data scenarios: unknown propagation patterns, complex topology-propagation relationships, and class imbalance between source and non-source nodes. SIDSL incorporates topology-aware priors through graph label propagation and employs a propagation-enhanced conditional denoiser with a GNN-parameterized label propagation module (GNN-LP). Additionally, we propose a structure-prior biased denoising scheme that initializes from structure-based source estimations rather than random noise, effectively countering class imbalance issues. Experimental results across four real-world datasets demonstrate SIDSL's superior performance, achieving 7.5-13.3% improvements in F1 scores compared to state-of-the-art methods. Notably, when pretrained with simulation data of synthetic patterns, SIDSL maintains robust performance with only 10% of training data, surpassing baselines by more than 18.8%. These results highlight SIDSL's effectiveness in real-world applications where labeled data is scarce.
Related papers
- A Transfer Framework for Enhancing Temporal Graph Learning in Data-Scarce Settings [30.97142882931946]
Dynamic interactions between entities are prevalent in domains like social platforms, financial systems, healthcare, and e-commerce.
TGNNs have achieved strong results for such predictive tasks but typically require extensive training data, which is often limited in real-world scenarios.
We introduce a novel transfer approach that disentangles node representations from their associated features through a structured bipartite encoding mechanism.
arXiv Detail & Related papers (2025-03-02T11:10:29Z) - A Novel Pearson Correlation-Based Merging Algorithm for Robust Distributed Machine Learning with Heterogeneous Data [0.0]
This paper proposes a novel method to improve the quality of local updates and enhance the robustness of the global model.<n>The proposed merging algorithm reduces the number of local nodes while maintaining the accuracy of the global model.<n> Experimental results on the MNIST dataset under simulated federated learning scenarios demonstrate the method's effectiveness.
arXiv Detail & Related papers (2025-01-19T16:59:07Z) - Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation [105.23631749213729]
We propose a novel method for unsupervised pre-training in low-data regimes.
Inspired by the recently successful prompting technique, we introduce a new method, Unsupervised Pre-training with Language-Vision Prompts.
We show that our method can converge faster and perform better than CNN-based models in low-data regimes.
arXiv Detail & Related papers (2024-05-22T06:48:43Z) - SEMRes-DDPM: Residual Network Based Diffusion Modelling Applied to
Imbalanced Data [9.969882349165745]
In the field of data mining and machine learning, commonly used classification models cannot effectively learn in unbalanced data.
Most of the classical oversampling methods are based on the SMOTE technique, which only focuses on the local information of the data.
We propose a novel oversampling method SEMRes-DDPM.
arXiv Detail & Related papers (2024-03-09T14:01:04Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data.
This article aims to assess the impact of training GNNs on localized subsets of the graph.
We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference.
arXiv Detail & Related papers (2023-07-24T11:04:22Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.