論文の概要: Optimal Brain Apoptosis
- arxiv url: http://arxiv.org/abs/2502.17941v1
- Date: Tue, 25 Feb 2025 08:03:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:23:37.135710
- Title: Optimal Brain Apoptosis
- Title(参考訳): 最適な脳アポトーシス
- Authors: Mingyuan Sun, Zheng Fang, Jiaxu Wang, Junjie Jiang, Delei Kong, Chenming Hu, Yuetong Fang, Renjing Xu,
- Abstract要約: 本稿では,Hessian行列を用いたパラメータ重要度推定手法を進歩させることにより,最適脳損傷(OBD)の基礎研究を基礎とする。
パラメータ毎にHessian-vector積を直接計算する新しいプルーニング手法であるOptimal Brain Apoptosis (OBA)を導入する。
このアプローチは、特にCNNやTransformerのコンテキストにおいて、より正確なプルーニングプロセスを可能にする。
- 参考スコア(独自算出の注目度): 4.780105454349552
- License:
- Abstract: The increasing complexity and parameter count of Convolutional Neural Networks (CNNs) and Transformers pose challenges in terms of computational efficiency and resource demands. Pruning has been identified as an effective strategy to address these challenges by removing redundant elements such as neurons, channels, or connections, thereby enhancing computational efficiency without heavily compromising performance. This paper builds on the foundational work of Optimal Brain Damage (OBD) by advancing the methodology of parameter importance estimation using the Hessian matrix. Unlike previous approaches that rely on approximations, we introduce Optimal Brain Apoptosis (OBA), a novel pruning method that calculates the Hessian-vector product value directly for each parameter. By decomposing the Hessian matrix across network layers and identifying conditions under which inter-layer Hessian submatrices are non-zero, we propose a highly efficient technique for computing the second-order Taylor expansion of parameters. This approach allows for a more precise pruning process, particularly in the context of CNNs and Transformers, as validated in our experiments including VGG19, ResNet32, ResNet50, and ViT-B/16 on CIFAR10, CIFAR100 and Imagenet datasets. Our code is available at https://github.com/NEU-REAL/OBA.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)とトランスフォーマーの複雑さとパラメータ数の増加は、計算効率とリソース要求の観点から問題を引き起こす。
プルーニングは、ニューロン、チャネル、接続などの余分な要素を取り除き、性能を著しく損なうことなく計算効率を向上させることで、これらの課題に対処する効果的な戦略として認識されている。
本稿では,Hessian行列を用いたパラメータ重要度推定手法を進歩させることにより,最適脳損傷(OBD)の基礎研究を基礎とする。
近似に依存する従来のアプローチとは異なり、パラメータごとにHessian-vector積の値を直接計算する新しいプルーニング法であるOptimal Brain Apoptosis (OBA)を導入する。
ネットワーク層にまたがるヘッセン行列を分解し、層間ヘッセン行列がゼロでない条件を特定することにより、パラメータの2階テイラー展開を計算するための高効率な手法を提案する。
VGG19、ResNet32、ResNet50、およびCIFAR10、CIFAR100、Imagenetデータセット上のVT-B/16を含む実験で検証されたように、このアプローチにより、特にCNNやTransformerのコンテキストにおいて、より正確なプルーニングプロセスが可能になる。
私たちのコードはhttps://github.com/NEU-REAL/OBA.comで公開されています。
関連論文リスト
- Pruning By Explaining Revisited: Optimizing Attribution Methods to Prune CNNs and Transformers [14.756988176469365]
計算要求の削減と効率の向上のための効果的なアプローチは、ディープニューラルネットワークの不要なコンポーネントを創り出すことである。
これまでの研究では、eXplainable AIの分野からの帰属法が、最も関係の低いネットワークコンポーネントを数ショットで抽出し、プルークする効果的な手段であることが示された。
論文 参考訳(メタデータ) (2024-08-22T17:35:18Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - ADC/DAC-Free Analog Acceleration of Deep Neural Networks with Frequency
Transformation [2.7488316163114823]
本稿では,アナログ領域の周波数ベーステンソル変換を用いた周波数領域ニューラルネットワークのエネルギー効率向上手法を提案する。
提案手法は,変換行列のトレーニング可能なパラメータを不要にすることで,よりコンパクトなセルを実現する。
16$times$16のクロスバーで8ビット入力処理を行い,Watt当たりの1602テラ演算のエネルギー効率を実現する。
論文 参考訳(メタデータ) (2023-09-04T19:19:39Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Sample-Then-Optimize Batch Neural Thompson Sampling [50.800944138278474]
我々はトンプソンサンプリング(TS)ポリシーに基づくブラックボックス最適化のための2つのアルゴリズムを提案する。
入力クエリを選択するには、NNをトレーニングし、トレーニングされたNNを最大化してクエリを選択するだけです。
我々のアルゴリズムは、大きなパラメータ行列を逆転する必要性を助長するが、TSポリシーの妥当性は保たれている。
論文 参考訳(メタデータ) (2022-10-13T09:01:58Z) - Neural Nets with a Newton Conjugate Gradient Method on Multiple GPUs [0.0]
ディープニューラルネットワークのトレーニングは多くの計算センターで計算リソースの共有を消費する。
本稿では,ベクトルのみに対するヘシアンの効果を必要とする新しい二階最適化手法を提案する。
提案手法を5つの代表的ニューラルネットワーク問題に対して2つの最先端技術と比較した。
論文 参考訳(メタデータ) (2022-08-03T12:38:23Z) - SHINE: SHaring the INverse Estimate from the forward pass for bi-level
optimization and implicit models [15.541264326378366]
近年,深層ニューラルネットワークの深度を高める手法として暗黙の深度学習が登場している。
トレーニングは双レベル問題として実行され、その計算複雑性は巨大なヤコビ行列の反復反転によって部分的に駆動される。
本稿では,この計算ボトルネックに対処する新たな手法を提案する。
論文 参考訳(メタデータ) (2021-06-01T15:07:34Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。