論文の概要: A Market for Accuracy: Classification under Competition
- arxiv url: http://arxiv.org/abs/2502.18052v1
- Date: Tue, 25 Feb 2025 10:18:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:20:57.157928
- Title: A Market for Accuracy: Classification under Competition
- Title(参考訳): 正確性市場:競争による分類
- Authors: Ohad Einav, Nir Rosenfeld,
- Abstract要約: 提供者、消費者、市場そのものに影響を与えるため、市場環境で学習を研究します。
本稿では,競争相手の存在下での市場シェアを最大化するために,競争対象の分類手法を提案する。
当社のアプローチは,提供者だけでなく消費者にもメリットがあることを示し,市場参入のタイミングとモデル更新が重要であることを明らかにする。
- 参考スコア(独自算出の注目度): 13.175123810033124
- License:
- Abstract: Machine learning models play a key role for service providers looking to gain market share in consumer markets. However, traditional learning approaches do not take into account the existence of additional providers, who compete with each other for consumers. Our work aims to study learning in this market setting, as it affects providers, consumers, and the market itself. We begin by analyzing such markets through the lens of the learning objective, and show that accuracy cannot be the only consideration. We then propose a method for classification under competition, so that a learner can maximize market share in the presence of competitors. We show that our approach benefits the providers as well as the consumers, and find that the timing of market entry and model updates can be crucial. We display the effectiveness of our approach across a range of domains, from simple distributions to noisy datasets, and show that the market as a whole remains stable by converging quickly to an equilibrium.
- Abstract(参考訳): 機械学習モデルは、消費者市場で市場シェアを獲得しようとしているサービスプロバイダーにとって重要な役割を担っている。
しかし、従来の学習アプローチは、消費者のために競合する追加のプロバイダの存在を考慮していない。
我々の研究は、提供者、消費者、市場そのものに影響を与えるため、この市場環境での学習を研究することを目的としています。
まず、学習目標のレンズを通してそのような市場を分析し、精度が唯一の考慮事項ではないことを示す。
そこで我々は,学習者が競争相手の存在下で市場シェアを最大化できるように,競争対象の分類方法を提案する。
当社のアプローチは,提供者だけでなく消費者にもメリットがあることを示し,市場参入のタイミングとモデル更新が重要であることを明らかにする。
単純な分布からノイズの多いデータセットに至るまで,我々のアプローチの有効性を示すとともに,市場全体が平衡に素早く収束して安定していることを示す。
関連論文リスト
- Large-Scale Contextual Market Equilibrium Computation through Deep Learning [10.286961524745966]
本稿では,市場均衡を近似する深層学習方式であるMarketFCNetを紹介する。
MarketFCNetは,既存の手法と比較して,競争性能と実行時間を大幅に低下させることを示す。
論文 参考訳(メタデータ) (2024-06-11T03:36:00Z) - A Network Simulation of OTC Markets with Multiple Agents [3.8944986367855963]
我々は、取引が市場メーカによってのみ仲介される、オーバー・ザ・カウンタ(OTC)金融市場をシミュレートするための新しいアプローチを提案する。
本稿では,ネットワークモデルを用いて市場構造が価格変動に与える影響について考察する。
論文 参考訳(メタデータ) (2024-05-03T20:45:00Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
フェデレートラーニング(FL)は、局所的な分散データを用いたトレーニングモデルにおいて、その効果がますます認識されている。
FLはモデルのマーケットプレースであり、顧客は買い手と売り手の両方として振る舞う。
本稿では,性能向上に基づく適切な価格設定を実現するため,オークションベースのソリューションを提案する。
論文 参考訳(メタデータ) (2024-02-02T07:25:53Z) - Federated Learning Incentive Mechanism under Buyers' Auction Market [2.316580879469592]
オークションベースのフェデレートラーニング(AFL)は、利己的なデータコンシューマとデータオーナ間のオープンなコラボレーションを可能にする。
我々は、購入者の市場における価格変動を説明するために、調達オークションの枠組みに適応する。
信頼性とデータ品質の高いクライアントを選択し、外部からの攻撃を防ぐために、ブロックチェーンベースの評判メカニズムを利用する。
論文 参考訳(メタデータ) (2023-09-10T16:09:02Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Machine Learning Framework: Competitive Intelligence and Key Drivers
Identification of Market Share Trends Among Healthcare Facilities [0.0]
アメリカ(アメリカ合衆国)の医療事業がこの研究のために選ばれている。
ワシントン州の60の重要施設にまたがるデータと、約3年間の歴史的データを扱う。
論文 参考訳(メタデータ) (2022-12-09T12:30:34Z) - Parity in Markets -- Methods, Costs, and Consequences [109.5267969644294]
我々は、市場デザイナーがフィッシャー市場の税や補助金を使って、市場均衡の結果が一定の制約内に収まることを確実にする方法を示します。
我々は、既存の文献で提案されている様々な公正性制約を市場ケースに適用し、その制約から誰が利益を得るか、誰を失うかを示す。
論文 参考訳(メタデータ) (2022-10-05T22:27:44Z) - Competition, Alignment, and Equilibria in Digital Marketplaces [97.03797129675951]
プラットフォームアクションがバンディットアルゴリズムであり,両プラットフォームがユーザ参加を競うデュオポリー市場について検討する。
私たちの主な発見は、この市場における競争は、市場の結果をユーザーユーティリティと完全に一致させるものではないということです。
論文 参考訳(メタデータ) (2022-08-30T17:43:58Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
私たちは、私たちの知る限り、最初のオープンソースのシミュレーションプラットフォームであるOpen SOUrce Market Simulator(OSOUM)を提供して、トレーディング市場、特にデータ市場を分析します。
我々は、購入に利用可能なさまざまなデータセットを所有する売り手と、購入に有効な適切なデータセットを検索する買い手という2つのタイプのエージェントからなる、特定のデータ市場モデルを記述し、実装する。
データ市場を扱うための商用フレームワークはすでに存在していますが、購入者および販売者の両方が(データ)市場に参加することの可能な振る舞いをシミュレートするための、自由で広範なエンドツーエンドの研究ツールを提供しています。
論文 参考訳(メタデータ) (2021-02-18T09:20:26Z) - Beating the market with a bad predictive model [0.0]
我々は、価格予測モデルに完全に劣る体系的な利益を一般的に得ることを証明している。
鍵となるアイデアは、予測モデルのトレーニング目標を変更して、それを市場から明示的にデコレーションすることだ。
論文 参考訳(メタデータ) (2020-10-23T16:20:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。