論文の概要: Monitoring snow avalanches from SAR data with deep learning
- arxiv url: http://arxiv.org/abs/2502.18157v1
- Date: Tue, 25 Feb 2025 12:41:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:19:15.431092
- Title: Monitoring snow avalanches from SAR data with deep learning
- Title(参考訳): ディープラーニングによるSARデータからの雪崩のモニタリング
- Authors: Filippo Maria Bianchi, Jakob Grahn,
- Abstract要約: 雪崩は、特に山岳地帯において、人命とインフラに重大なリスクをもたらす。
衛星搭載合成開口レーダ(SAR)は,大規模な雪崩検出のための重要なツールとなっている。
本章では,SARデータからの雪崩の検出とセグメンテーションにおけるディープラーニングの適用について概説する。
- 参考スコア(独自算出の注目度): 5.524804393257921
- License:
- Abstract: Snow avalanches present significant risks to human life and infrastructure, particularly in mountainous regions, making effective monitoring crucial. Traditional monitoring methods, such as field observations, are limited by accessibility, weather conditions, and cost. Satellite-borne Synthetic Aperture Radar (SAR) data has become an important tool for large-scale avalanche detection, as it can capture data in all weather conditions and across remote areas. However, traditional processing methods struggle with the complexity and variability of avalanches. This chapter reviews the application of deep learning for detecting and segmenting snow avalanches from SAR data. Early efforts focused on the binary classification of SAR images, while recent advances have enabled pixel-level segmentation, providing greater accuracy and spatial resolution. A case study using Sentinel-1 SAR data demonstrates the effectiveness of deep learning models for avalanche segmentation, achieving superior results over traditional methods. We also present an extension of this work, testing recent state-of-the-art segmentation architectures on an expanded dataset of over 4,500 annotated SAR images. The best-performing model among those tested was applied for large-scale avalanche detection across the whole of Norway, revealing important spatial and temporal patterns over several winter seasons.
- Abstract(参考訳): 雪崩は人命やインフラ、特に山岳地帯に重大なリスクをもたらし、効果的なモニタリングが重要である。
フィールド観測のような従来のモニタリング手法は、アクセシビリティ、気象条件、コストによって制限されている。
衛星搭載の合成開口レーダ(SAR)データは、すべての気象条件や遠隔地におけるデータをキャプチャできるため、大規模な雪崩検出のための重要なツールとなっている。
しかし、従来の処理手法は雪崩の複雑さと変動性に苦慮している。
本章では,SARデータからの雪崩の検出とセグメンテーションにおけるディープラーニングの適用について概説する。
初期の取り組みはSAR画像のバイナリ分類に重点を置いていたが、最近の進歩によりピクセルレベルのセグメンテーションが可能となり、精度と空間分解能が向上した。
Sentinel-1 SARデータを用いたケーススタディでは,雪崩セグメンテーションにおけるディープラーニングモデルの有効性が実証され,従来の手法よりも優れた結果が得られた。
また,4500以上の注釈付きSAR画像の拡張データセット上で,最新の最先端セグメンテーションアーキテクチャをテストする。
ノルウェー全土の大規模な雪崩検出には, 冬期において重要な空間的, 時間的パターンがみられた。
関連論文リスト
- Tomographic SAR Reconstruction for Forest Height Estimation [4.1942958779358674]
樹高推定は、生態学および森林学の応用において、バイオマス推定の重要な指標となる。
本研究では,SAR(Synthetic Aperture Radar)の派生である2Dシングルルックコンプレックス(SLC)画像から直接,深層学習を用いて林冠の高さを推定する。
本手法は,従来のトモグラフィ信号処理を回避し,SARキャプチャからエンド製品への遅延を低減する。
論文 参考訳(メタデータ) (2024-12-01T17:37:25Z) - DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations [42.635670495018964]
我々はDiffSRと呼ばれる2段階拡散法を提案し、高周波の詳細と高値領域を生成する。
提案手法は, 最新技術(SOTA)の成果を達成し, 高周波の細部と高値領域を生成できることを実証する。
論文 参考訳(メタデータ) (2024-11-11T04:50:34Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
我々は,大規模SARオブジェクト検出のための新しいベンチマークデータセットとオープンソース手法を構築した。
私たちのデータセットであるSARDet-100Kは、10の既存のSAR検出データセットの厳格な調査、収集、標準化の結果です。
私たちの知る限りでは、SARDet-100KはCOCOレベルの大規模マルチクラスSARオブジェクト検出データセットとしては初めてのものです。
論文 参考訳(メタデータ) (2024-03-11T09:20:40Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Deep Learning for Rapid Landslide Detection using Synthetic Aperture
Radar (SAR) Datacubes [0.8208704543835964]
我々は,地球規模で4つの地すべりイベントに対して,事前処理,機械学習可能なSARデータキューブを提供する。
教師付き深層学習(DL)によるSAR地すべり検出の可能性について検討する。
DLモデルは、SARデータから地すべりを検知し、精度-リコール曲線0.7を超えるエリアを達成できる。
論文 参考訳(メタデータ) (2022-11-05T10:31:57Z) - Guided deep learning by subaperture decomposition: ocean patterns from
SAR imagery [36.922471841100176]
センチネル1 SAR 波動モードのヴィグネットは、2014年以来、多くの重要な海洋現象や大気現象を捉えてきた。
本研究では,SAR深層学習モデルの事前処理段階としてサブアパーチャ分解を適用することを提案する。
論文 参考訳(メタデータ) (2022-04-09T09:49:05Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Self-supervised Contrastive Learning for Volcanic Unrest Detection [4.152165675786138]
InSAR(Interferometric Synthetic Aperture Radar)データから測定した地盤変形は,火山活動の兆候と考えられる。
近年の研究では, 火山の変形信号の検出にSentinel-1 InSARデータと教師付き深層学習(DL)手法を用いることの可能性が示されている。
本稿では,ラベルのないInSARデータに隠された高品質な視覚表現を学習するために,自己教師付きコントラスト学習を用いることを提案する。
論文 参考訳(メタデータ) (2022-02-08T17:54:51Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。