論文の概要: RefuteBench 2.0 -- Agentic Benchmark for Dynamic Evaluation of LLM Responses to Refutation Instruction
- arxiv url: http://arxiv.org/abs/2502.18308v1
- Date: Tue, 25 Feb 2025 15:51:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 18:40:51.627968
- Title: RefuteBench 2.0 -- Agentic Benchmark for Dynamic Evaluation of LLM Responses to Refutation Instruction
- Title(参考訳): RefuteBench 2.0 -- Refutation命令に対するLCM応答の動的評価のためのエージェントベンチマーク
- Authors: Jianhao Yan, Yun Luo, Yue Zhang,
- Abstract要約: 本稿では,従来のRefuteBenchを拡張したRefuteBench 2.0について紹介する。
有効期間の異なる過渡的および持続的な消火命令を設計する。
LLMをベースとしたリフューターは、より人間的なリフューティングを発生させ、評価器は、人間と高い相関関係のスコアを割り当てることができた。
- 参考スコア(独自算出の注目度): 17.782410287625645
- License:
- Abstract: In the multi-turn interaction schema, large language models (LLMs) can leverage user feedback to enhance the quality and relevance of their responses. However, evaluating an LLM's ability to incorporate user refutation feedback is crucial yet challenging. In this study, we introduce RefuteBench 2.0, which significantly extends the original RefuteBench by incorporating LLM agents as refuters and evaluators, which allows for flexible and comprehensive assessment. We design both transient and persistent refutation instructions with different validity periods. Meta-evaluation shows that the LLM-based refuter could generate more human-like refutations and the evaluators could assign scores with high correlation with humans. Experimental results of various LLMs show that current models could effectively satisfy the refutation but fail to memorize the refutation information. Interestingly, we also observe that the performance of the initial task decreases as the refutations increase. Analysis of the attention scores further shows a potential weakness of current LLMs: they struggle to retain and correctly use previous information during long context dialogues. https://github.com/ElliottYan/RefuteBench-2.0
- Abstract(参考訳): マルチターンインタラクションスキーマでは、大きな言語モデル(LLM)がユーザからのフィードバックを活用して、応答の品質と関連性を高めることができる。
しかし, LLM のユーザ反発フィードバックを組み込む能力を評価することは極めて困難である。
本研究では, LLM エージェントをリフュータおよび評価器として組み込むことにより, 元の RefuteBench 2.0 を大幅に拡張した RefuteBench 2.0 を紹介する。
有効期間の異なる過渡的および持続的な消火命令を設計する。
メタ評価は、LSMをベースとしたリフューターがより人間的なリフューティングを発生し、評価器がスコアを人間と高い相関関係で割り当てることを示した。
種々のLCM実験結果から, 現在のモデルでは消火を効果的に満たすことができたが, 消火情報を記憶できなかったことが示唆された。
また, 難燃度が増大するにつれて, 初期課題の性能が低下することが観察された。
注意点の分析は、現在のLLMの潜在的な弱点を更に示している: 彼らは長期の会話において、以前の情報を保持し、正しく使用するのに苦労している。
https://github.com/ElliottYan/RefuteBench-2.0
関連論文リスト
- Time-Reversal Provides Unsupervised Feedback to LLMs [31.575024356581846]
Time Reversed Language Models (TRLM) は、応答に条件付きでクエリをスコアし、生成することができる。
TRLMのスコアリングは,従来のクエリのフォワードスコアよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-12-03T17:54:12Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
実世界のマルチ制約命令に従うLLMの能力を評価するために設計された最初のベンチマークであるRealInstructを紹介する。
オープンソースモデルとプロプライエタリモデルのパフォーマンスギャップを解決するため,Decompose, Critique and Refine(DeCRIM)自己補正パイプラインを提案する。
この結果から,DeCRIMはフィードバックが弱い場合でも,RealInstructでは7.3%,IFEvalでは8.0%,Mistralでは7.3%向上した。
論文 参考訳(メタデータ) (2024-10-09T01:25:10Z) - RefuteBench: Evaluating Refuting Instruction-Following for Large Language Models [17.782410287625645]
本稿では,質問応答,機械翻訳,電子メール作成などのタスクをカバーするベンチマークRefuteBenchを提案する。
評価の目的は、モデルが反響命令の形で肯定的にフィードバックを受けられるか、会話を通してユーザー要求に一貫して従えられるかを評価することである。
論文 参考訳(メタデータ) (2024-02-21T01:39:56Z) - Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives [45.87069217634753]
研究によると、外部からのフィードバックがなければ、Large Language Modelの本質的なリフレクションは不安定である。
我々の調査によると、重要なボトルネックは自己評価されたフィードバックの品質である。
要求に合わせて様々な解決の観点を適応的に探求し、相違点を対比し、これらの相違点を再検討し、相違点を排除するために使用できるチェックリストにまとめます。
論文 参考訳(メタデータ) (2024-01-04T00:32:33Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
本稿では,Felmと呼ばれる大規模言語モデルのファクチュアリティ評価のためのベンチマークを紹介する。
我々は,大規模言語モデルから生成された応答を収集し,微粒な方法で事実ラベルを注釈付けする。
その結果,検索は事実性評価に役立つが,現在のLCMは事実の誤りを忠実に検出するには不十分であることがわかった。
論文 参考訳(メタデータ) (2023-10-01T17:37:31Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。