Learning sparse generalized linear models with binary outcomes via iterative hard thresholding
- URL: http://arxiv.org/abs/2502.18393v1
- Date: Tue, 25 Feb 2025 17:42:33 GMT
- Title: Learning sparse generalized linear models with binary outcomes via iterative hard thresholding
- Authors: Namiko Matsumoto, Arya Mazumdar,
- Abstract summary: In statistics, generalized linear models (GLMs) are widely used for modeling data.<n>In this work, we propose to use and analyze an iterative hard thresholding (projected gradient descent on the ReLU loss) algorithm, called binary iterative hard thresholding (BIHT)<n>We establish that BIHT is statistically efficient and converges to the correct solution for parameter estimation in a general class of sparse binary GLMs.
- Score: 15.283757486793226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In statistics, generalized linear models (GLMs) are widely used for modeling data and can expressively capture potential nonlinear dependence of the model's outcomes on its covariates. Within the broad family of GLMs, those with binary outcomes, which include logistic and probit regressions, are motivated by common tasks such as binary classification with (possibly) non-separable data. In addition, in modern machine learning and statistics, data is often high-dimensional yet has a low intrinsic dimension, making sparsity constraints in models another reasonable consideration. In this work, we propose to use and analyze an iterative hard thresholding (projected gradient descent on the ReLU loss) algorithm, called binary iterative hard thresholding (BIHT), for parameter estimation in sparse GLMs with binary outcomes. We establish that BIHT is statistically efficient and converges to the correct solution for parameter estimation in a general class of sparse binary GLMs. Unlike many other methods for learning GLMs, including maximum likelihood estimation, generalized approximate message passing, and GLM-tron (Kakade et al. 2011; Bahmani et al. 2016), BIHT does not require knowledge of the GLM's link function, offering flexibility and generality in allowing the algorithm to learn arbitrary binary GLMs. As two applications, logistic and probit regression are additionally studied. In this regard, it is shown that in logistic regression, the algorithm is in fact statistically optimal in the sense that the order-wise sample complexity matches (up to logarithmic factors) the lower bound obtained previously. To the best of our knowledge, this is the first work achieving statistical optimality for logistic regression in all noise regimes with a computationally efficient algorithm. Moreover, for probit regression, our sample complexity is on the same order as that obtained for logistic regression.
Related papers
- Learning a Class of Mixed Linear Regressions: Global Convergence under General Data Conditions [1.9295130374196499]
Mixed linear regression (MLR) has attracted increasing attention because of its great theoretical and practical importance in nonlinear relationships by utilizing a mixture of linear regression sub-models.
Although considerable efforts have been devoted to the learning problem of such systems, most existing investigations impose the strict independent and identically distributed (i.i.d.) or distributed PE conditions.
arXiv Detail & Related papers (2025-03-24T09:57:39Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - A Novel Approach in Solving Stochastic Generalized Linear Regression via
Nonconvex Programming [1.6874375111244329]
This paper considers a generalized linear regression model as a problem with chance constraints.
The results of the proposed algorithm were over 1 to 2 percent better than the ordinary logistic regression model.
arXiv Detail & Related papers (2024-01-16T16:45:51Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - A Unified Approach to Learning Ising Models: Beyond Independence and
Bounded Width [7.605563562103568]
We revisit the problem of efficiently learning the underlying parameters of Ising models from data.
We show that a simple existing approach based on node-wise logistic regression provably succeeds at recovering the underlying model in several new settings.
arXiv Detail & Related papers (2023-11-15T18:41:19Z) - Generalized Oversampling for Learning from Imbalanced datasets and
Associated Theory [0.0]
In supervised learning, it is quite frequent to be confronted with real imbalanced datasets.
We propose a data augmentation procedure, the GOLIATH algorithm, based on kernel density estimates.
We evaluate the performance of the GOLIATH algorithm in imbalanced regression situations.
arXiv Detail & Related papers (2023-08-05T23:08:08Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - Lassoed Tree Boosting [53.56229983630983]
We prove that a gradient boosted tree algorithm with early stopping faster than $n-1/4$ L2 convergence in the large nonparametric space of cadlag functions of bounded sectional variation.
Our convergence proofs are based on a novel, general theorem on early stopping with empirical loss minimizers of nested Donsker classes.
arXiv Detail & Related papers (2022-05-22T00:34:41Z) - Efficient Construction of Nonlinear Models over Normalized Data [21.531781003420573]
We show how it is possible to decompose in a systematic way both for binary joins and for multi-way joins to construct mixture models.
We present algorithms that can conduct the training of the network in a factorized way and offer performance advantages.
arXiv Detail & Related papers (2020-11-23T19:20:03Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
We study binary linear classification under a generative Gaussian mixture model.
We derive novel non-asymptotic bounds on the classification error of the latter.
Our results extend to a noisy model with constant probability noise flips.
arXiv Detail & Related papers (2020-11-18T07:59:55Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
arXiv Detail & Related papers (2020-10-06T04:28:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.