論文の概要: The FFT Strikes Back: An Efficient Alternative to Self-Attention
- arxiv url: http://arxiv.org/abs/2502.18394v1
- Date: Tue, 25 Feb 2025 17:43:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 17:42:46.171307
- Title: The FFT Strikes Back: An Efficient Alternative to Self-Attention
- Title(参考訳): FFTが逆戻り:自己認識の効果的な代替手段
- Authors: Jacob Fein-Ashley,
- Abstract要約: 我々は、$mathcalO(nlog n)$時間でグローバルトークンの混合を実現するための適応スペクトルフィルタリングフレームワークであるFFTNetを紹介する。
学習可能なスペクトルフィルタとmodReLUアクティベーションは、従来の自己アテンションに対する厳密で適応的な代替手段を提供するために、サルエント周波数成分を動的に強調する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional self-attention mechanisms incur quadratic complexity, limiting their scalability on long sequences. We introduce FFTNet, an adaptive spectral filtering framework that leverages the Fast Fourier Transform (FFT) to achieve global token mixing in $\mathcal{O}(n\log n)$ time. By transforming inputs into the frequency domain, FFTNet exploits the orthogonality and energy preservation guaranteed by Parseval's theorem to capture long-range dependencies efficiently. A learnable spectral filter and modReLU activation dynamically emphasize salient frequency components, providing a rigorous and adaptive alternative to traditional self-attention. Experiments on the Long Range Arena and ImageNet benchmarks validate our theoretical insights and demonstrate superior performance over fixed Fourier and standard attention models.
- Abstract(参考訳): 従来の自己アテンション機構は2次複雑であり、長い列のスケーラビリティを制限している。
FFTNetは、Fast Fourier Transform(FFT)を利用して、$\mathcal{O}(n\log n)$時間でグローバルトークンの混合を実現する適応スペクトルフィルタリングフレームワークである。
入力を周波数領域に変換することで、FFTNetはParsevalの定理によって保証される直交性とエネルギー保存を利用して、長距離依存を効率的に捉える。
学習可能なスペクトルフィルタとmodReLUアクティベーションは、従来の自己アテンションに対する厳密で適応的な代替手段を提供するために、サルエント周波数成分を動的に強調する。
Long Range ArenaとImageNetベンチマークの実験は、我々の理論的洞察を検証し、固定されたフーリエおよび標準の注意モデルよりも優れた性能を示す。
関連論文リスト
- Beyond Homogeneous Attention: Memory-Efficient LLMs via Fourier-Approximated KV Cache [67.47789629197857]
本稿では,トランスヘッド次元の不均一な役割を生かした学習自由フレームワークを提案する。
フーリエアテンションは、長コンテキスト非感性次元をフーリエ基底に投影することにより、その時間的進化を固定長のスペクトル係数で近似する。
本稿では,FourierAttention が LongBench と Needle-In-A-Haystack 上で最高の長文精度を実現することを示す。
論文 参考訳(メタデータ) (2025-06-13T15:35:54Z) - Block Circulant Adapter for Large Language Models [10.353352027807272]
大規模言語モデル (LLM) の調整は, モデルサイズが大きいため困難である。
最近のフーリエ領域に基づく手法は、微調整コストを削減する可能性を示している。
本研究では, 循環行列の特性を活用するために, 安定トレーニングを施したブロック循環行列微調整法を提案する。
論文 参考訳(メタデータ) (2025-05-01T15:14:32Z) - Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models [92.18057318458528]
Token-ShuffleはTransformerにおける画像トークンの数を減らす新しい方法である。
我々の戦略は、事前訓練されたテキストエンコーダを必要とせず、MLLMが超高解像度画像合成をサポートできるようにする。
GenAIベンチマークでは、2.7Bモデルがハードプロンプトで0.77点、ARモデルLlamaGenが0.18点、拡散モデルLDMが0.15点である。
論文 参考訳(メタデータ) (2025-04-24T17:59:56Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORMは、イメージエンコーダとビデオLLMの間に専用のテンポラリエンコーダを組み込んだ、新しいアーキテクチャである。
我々は,STORMが様々な長いビデオ理解ベンチマークにおいて最先端の結果を達成することを示す。
論文 参考訳(メタデータ) (2025-03-06T06:17:38Z) - Sliding Window Attention Training for Efficient Large Language Models [55.56483740523027]
SWATを導入し,スライディングウインドウ・アテンション・トレーニング(Sliding Window Attention Training)を用いて,より効率的な長文処理を実現する。
本稿ではまず,変圧器の非効率性を注目シンク現象とみなす。
我々は、ソフトマックスをシグモイド関数に置き換え、効率的な情報圧縮と保持のためにバランスの取れたALiBiとRotary Position Embeddingを利用する。
論文 参考訳(メタデータ) (2025-02-26T05:31:44Z) - Hamming Attention Distillation: Binarizing Keys and Queries for Efficient Long-Context Transformers [18.469378618426294]
本稿では,ハミング注意蒸留(HAD)について紹介する。これは注意機構のキーとクエリをバイナライズして,大幅な効率向上を実現するフレームワークである。
我々は,HADをカスタムハードウェアシミュレーションに実装し,標準的なハードウェア実装と比較して優れた性能特性を示す。
論文 参考訳(メタデータ) (2025-02-03T19:24:01Z) - FlatQuant: Flatness Matters for LLM Quantization [58.28221892035609]
重みとアクティベーションの平坦性を高めるための新しいポストトレーニング量子化手法であるFlatQuantを提案する。
提案手法では,各線形層に配向した最適アフィン変換を,軽量な対象ランタイムを介して数時間で校正する。
推論レイテンシーのために、FlatQuantは、プリ量子化変換によって引き起こされる遅延を、QuatRotの0.26xから単に$textbf0.07x$に減らし、プリフィルの$textbf2.3x$とデコードのための$textbf1.7x$のスピードアップをもたらす。
論文 参考訳(メタデータ) (2024-10-12T08:10:28Z) - Neural Fourier Modelling: A Highly Compact Approach to Time-Series Analysis [9.969451740838418]
時系列解析のためのコンパクトで強力なソリューションであるニューラルフーリエモデリング(NFM)を導入する。
NFM はフーリエ変換 (FT) の2つの重要な性質 (i) 有限長時系列をフーリエ領域の関数としてモデル化する能力 (ii) フーリエ領域内のデータ操作の能力 (ii) に基礎を置いている。
NFMは幅広いタスクで最先端のパフォーマンスを達成しており、テスト時にこれまで見つからなかったサンプリングレートを持つ時系列シナリオに挑戦する。
論文 参考訳(メタデータ) (2024-10-07T02:39:55Z) - A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention [43.211427581302715]
大規模言語モデルにおける文脈長を増大させるため,HiP(Hierarchically Pruned Attention)を提案する。
HiPは注意機構の時間的複雑さを$O(T log T)$に減らし、空間的複雑さを$O(T)$に減らし、$T$はシーケンス長である。
HiPは, 劣化を最小限に抑えつつ, プリフィルとデコードの両方のレイテンシとメモリ使用率を著しく低減することを示す。
論文 参考訳(メタデータ) (2024-06-14T08:32:45Z) - DiG: Scalable and Efficient Diffusion Models with Gated Linear Attention [82.24166963631949]
Diffusion Gated Linear Attention Transformers (DiG) は、最小限のパラメータオーバーヘッドを持つ単純で適用可能なソリューションである。
より優れた効率性と競争効率を示す、平易なU字型アーキテクチャの2つのバリエーションを提供する。
論文 参考訳(メタデータ) (2024-05-28T17:59:33Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
トランスフォーマーベースのモデルは、自然言語処理の最も広く使われているアーキテクチャの1つとして登場した。
これらの巨大なモデルはメモリが空腹で、最先端のAIアクセラレータでも大きな推論レイテンシが生じる。
本稿ではトークン生成フェーズの自己認識をスケーラブルに計算する手法であるLeanAttentionを提案する。
論文 参考訳(メタデータ) (2024-05-17T00:52:39Z) - Parameter-Efficient Fine-Tuning with Discrete Fourier Transform [26.563344030824414]
ローランク適応(LoRA)は近年、微調整基礎モデルに多くの関心を集めている。
デルタW$を空間領域の行列として扱い、そのスペクトル係数のごく一部しか学習しないフーリエFTを導入する。
提案手法は,様々なタスクにおいてLoRAよりも少ないパラメータで同等あるいは優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-05T17:15:24Z) - ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting [7.694820760102176]
ATFNetは、時間ドメインモジュールと周波数ドメインモジュールを組み合わせた革新的なフレームワークである。
本稿では,2つのモジュール間の重み調整機構であるドミナント・ハーモニック・シリーズ・エナジー・ウェイトリングを紹介する。
我々の複素数値スペクトル注意機構は、異なる周波数の組み合わせ間の複雑な関係を識別するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2024-04-08T04:41:39Z) - Prompt-prompted Adaptive Structured Pruning for Efficient LLM Generation [31.657608562937543]
本稿では,GRIFFINについて紹介する。GRIFFINはトレーニング不要かつ校正不要な手法で,シーケンスレベルで独自のFFエキスパートを選択して効率よく生成する。
GRIFFINは、様々な分類タスクと生成タスクをほとんどあるいは全く分解することなく、オリジナルのモデルの性能を維持している。
論文 参考訳(メタデータ) (2024-04-01T17:56:06Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
視覚的トークンに対する注意計算は,LVLMの深い層において極めて非効率であることがわかった。
本稿では,計算効率の最適化を目的とした多用途プラグアンドプレイ方式であるFastVを紹介する。
論文 参考訳(メタデータ) (2024-03-11T14:35:32Z) - Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance [87.19164603145056]
実験室レベルの資源をトラッキングするための大規模ViTモデルのパワーを明らかにする手法であるLoRATを提案する。
私たちの作業の本質は、推論レイテンシを追加することなく、モデルパラメータの小さなサブセットを微調整するテクニックであるLoRAを適用することです。
我々はPETRの適応のみに基づくアンカーフリーヘッドを設計し、計算オーバーヘッドを少なくして性能を向上する。
論文 参考訳(メタデータ) (2024-03-08T11:41:48Z) - FFSplit: Split Feed-Forward Network For Optimizing Accuracy-Efficiency
Trade-off in Language Model Inference [57.119047493787185]
本稿では、異なるハードウェア上で、モデルサイズを43.1%削減し、1.25sim1.56times$wall clock time speedupを無視できる精度低下で実現する方法を示す。
実際、本手法では、異なるハードウェア上で、モデルサイズを43.1%削減し、1.25sim1.56Times$wall clock time speedupを無視できる精度で実現している。
論文 参考訳(メタデータ) (2024-01-08T17:29:16Z) - FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor
Cores [18.016204763652553]
長いフィルタを持つ畳み込みモデルは、多くの長いシーケンスタスクにおいて最先端の推論能力を示している。
Fast Fourier Transform (FFT) は、長い畳み込みを$O(N logN)$ time in sequence length $N$で実行可能にするが、ハードウェア利用は乏しい。
本稿では,FFT畳み込みの最適化方法について検討する。
論文 参考訳(メタデータ) (2023-11-10T07:33:35Z) - p-Laplacian Transformer [7.2541371193810384]
グラフと画像信号処理をルーツとする$p$-Laplacian正規化は、これらのデータに対する正規化効果を制御するパラメータ$p$を導入している。
まず、自己注意機構が最小のラプラシアン正規化を得ることを示す。
次に、新しい変圧器のクラス、すなわち$p$-Laplacian Transformer (p-LaT)を提案する。
論文 参考訳(メタデータ) (2023-11-06T16:25:56Z) - WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series
Forecasting [61.64303388738395]
本稿では,長期連続予測のためのWavelet-Fourier Transform Network (WFTNet)を提案する。
さまざまな時系列データセットのテストでは、WFTNetは他の最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-09-20T13:44:18Z) - Dynamic PlenOctree for Adaptive Sampling Refinement in Explicit NeRF [6.135925201075925]
PlenOctree DOTは,シーンの複雑さの変化に対応するために,サンプル分布を適応的に改良する。
POTと比較して、私たちのDOTは視覚的品質を高め、パラメータを55.15ドル/68.84%以上削減し、NeRF合成とタンクにそれぞれ1.7/1.9 FPSを提供する。
論文 参考訳(メタデータ) (2023-07-28T06:21:42Z) - Adaptive Frequency Filters As Efficient Global Token Mixers [100.27957692579892]
適応周波数フィルタは効率的なグローバルトークンミキサーとして機能することを示す。
我々は、AFFNetと呼ばれる軽量ニューラルネットワークを構築するために、AFFトークンミキサーを主要なニューラルネットワークとして捉えています。
論文 参考訳(メタデータ) (2023-07-26T07:42:28Z) - Recurrence without Recurrence: Stable Video Landmark Detection with Deep
Equilibrium Models [96.76758318732308]
本稿では,最近提案されたDeep Equilibrium Model (DEQ) が,この計算形式に自然に適応可能であることを示す。
我々のLandmark DEQ(LDEQ)は、WFLW顔ランドマークデータセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-04-02T19:08:02Z) - Dynamic Temporal Filtering in Video Models [128.02725199486719]
時間的特徴学習の新しいレシピである動的時間フィルタ(DTF)を提案する。
DTFは、その長距離時間ダイナミクスをモデル化するために、空間的位置ごとに特別な周波数フィルタを学習する。
DTFブロックをConvNetsとTransformerにプラグインすることで、DTF-NetとDTF-Transformerが得られる。
論文 参考訳(メタデータ) (2022-11-15T15:59:28Z) - Minimax-Optimal Multi-Agent RL in Zero-Sum Markov Games With a
Generative Model [50.38446482252857]
2人プレイのゼロサムマルコフゲームは多エージェント強化学習においておそらく最も基本的な設定である。
我々は,$$ widetildeObiggを用いて,$varepsilon$-approximate Markov NEポリシーを学習する学習アルゴリズムを開発した。
我々は、分散型量の役割を明確にするFTRLに対する洗練された後悔境界を導出する。
論文 参考訳(メタデータ) (2022-08-22T17:24:55Z) - Parameterization of Cross-Token Relations with Relative Positional
Encoding for Vision MLP [52.25478388220691]
視覚多層パーセプトロン(MLP)はコンピュータビジョンタスクにおいて有望な性能を示す。
トークンミキシングレイヤを使用して、トランスフォーマーが使用するマルチヘッド自己保持機構とは対照的に、クロストークンインタラクションをキャプチャする。
トークン混合のためのクロストークン関係を効率的に符号化する新しい位置空間ゲーティングユニット(PoSGU)を提案する。
論文 参考訳(メタデータ) (2022-07-15T04:18:06Z) - Long-term Leap Attention, Short-term Periodic Shift for Video
Classification [41.87505528859225]
ビデオトランスは、静的な視覚変換器よりも計算負荷が大きい。
本稿では,ビデオトランスフォーマーのための長期的textbftextitLeap Attention'(LAN),短期的textbftextitPeriodic Shift'(textitP-Shift)モジュールであるLAPSを提案する。
論文 参考訳(メタデータ) (2022-07-12T13:30:15Z) - Deep Frequency Filtering for Domain Generalization [55.66498461438285]
Deep Neural Networks(DNN)は、学習プロセスにおいて、いくつかの周波数成分を優先する。
本稿では、ドメイン一般化可能な特徴を学習するためのDeep Frequency Filtering (DFF)を提案する。
提案したDFFをベースラインに適用すると,ドメインの一般化タスクにおける最先端の手法よりも優れることを示す。
論文 参考訳(メタデータ) (2022-03-23T05:19:06Z) - Functional Regularization for Reinforcement Learning via Learned Fourier
Features [98.90474131452588]
本稿では、入力を学習されたフーリエベースに埋め込むことにより、深層強化学習のための簡単なアーキテクチャを提案する。
その結果、状態ベースと画像ベースの両方のRLのサンプル効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-12-06T18:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。