MAPoRL: Multi-Agent Post-Co-Training for Collaborative Large Language Models with Reinforcement Learning
- URL: http://arxiv.org/abs/2502.18439v1
- Date: Tue, 25 Feb 2025 18:33:48 GMT
- Title: MAPoRL: Multi-Agent Post-Co-Training for Collaborative Large Language Models with Reinforcement Learning
- Authors: Chanwoo Park, Seungju Han, Xingzhi Guo, Asuman Ozdaglar, Kaiqing Zhang, Joo-Kyung Kim,
- Abstract summary: We introduce a new post-training paradigm MAPoRL (Multi-Agent Post-co-training for collaborative LLMs with Reinforcement Learning)<n>In MAPoRL, multiple LLMs first generate their own responses independently and engage in a multi-turn discussion to collaboratively improve the final answer.<n>A MAPoRL verifier evaluates both the answer and the discussion, by assigning a score that verifies the correctness of the answer.<n>The score serves as the co-training reward, and is then maximized through multi-agent RL.
- Score: 26.736078756799635
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Leveraging multiple large language models (LLMs) to build collaborative multi-agentic workflows has demonstrated significant potential. However, most previous studies focus on prompting the out-of-the-box LLMs, relying on their innate capability for collaboration, which may not improve LLMs' performance as shown recently. In this paper, we introduce a new post-training paradigm MAPoRL (Multi-Agent Post-co-training for collaborative LLMs with Reinforcement Learning), to explicitly elicit the collaborative behaviors and further unleash the power of multi-agentic LLM frameworks. In MAPoRL, multiple LLMs first generate their own responses independently and engage in a multi-turn discussion to collaboratively improve the final answer. In the end, a MAPoRL verifier evaluates both the answer and the discussion, by assigning a score that verifies the correctness of the answer, while adding incentives to encourage corrective and persuasive discussions. The score serves as the co-training reward, and is then maximized through multi-agent RL. Unlike existing LLM post-training paradigms, MAPoRL advocates the co-training of multiple LLMs together using RL for better generalization. Accompanied by analytical insights, our experiments demonstrate that training individual LLMs alone is insufficient to induce effective collaboration. In contrast, multi-agent co-training can boost the collaboration performance across benchmarks, with generalization to unseen domains.
Related papers
- SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks.
Existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs.
We propose a novel RL algorithm, SWEET-RL, that uses a carefully designed optimization objective to train a critic model with access to additional training-time information.
Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms.
arXiv Detail & Related papers (2025-03-19T17:55:08Z) - Collab-Overcooked: Benchmarking and Evaluating Large Language Models as Collaborative Agents [17.773801766612703]
Large language models (LLMs) based agent systems have made great strides in real-world applications beyond traditional NLP tasks.
This paper proposes a new benchmark, Collab-Overcooked, built on the popular Overcooked-AI game with more applicable and challenging tasks in interactive environments.
arXiv Detail & Related papers (2025-02-27T13:31:13Z) - When One LLM Drools, Multi-LLM Collaboration Rules [98.71562711695991]
We argue for multi-LLM collaboration to better represent the extensive diversity of data, skills, and people.
We organize existing multi-LLM collaboration methods into a hierarchy, based on the level of access and information exchange.
We envision multi-LLM collaboration as an essential path toward compositional intelligence and collaborative AI development.
arXiv Detail & Related papers (2025-02-06T21:13:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
We present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems.<n>Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles.<n>We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - LLM-based Multi-Agent Reinforcement Learning: Current and Future Directions [8.55917897789612]
We focus on the cooperative tasks of multiple agents with a common goal and communication among them.
We also consider human-in/on-the-loop scenarios enabled by the language component in the framework.
arXiv Detail & Related papers (2024-05-17T22:10:23Z) - Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discussions the
Key? [84.36332588191623]
We propose a novel group discussion framework to enrich the set of discussion mechanisms.
We observe that the multi-agent discussion performs better than a single agent only when there is no demonstration in the prompt.
arXiv Detail & Related papers (2024-02-28T12:04:05Z) - Theory of Mind for Multi-Agent Collaboration via Large Language Models [5.2767999863286645]
This study evaluates Large Language Models (LLMs)-based agents in a multi-agent cooperative text game with Theory of Mind (ToM) inference tasks.
We observed evidence of emergent collaborative behaviors and high-order Theory of Mind capabilities among LLM-based agents.
arXiv Detail & Related papers (2023-10-16T07:51:19Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.