論文の概要: IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents
- arxiv url: http://arxiv.org/abs/2502.18530v1
- Date: Tue, 25 Feb 2025 01:52:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:58:43.083613
- Title: IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents
- Title(参考訳): IMPROVE: LLMエージェントを応用した反復モデルパイプラインリファインメントと最適化
- Authors: Eric Xue, Zeyi Huang, Yuyang Ji, Haohan Wang,
- Abstract要約: 大規模言語モデル(LLM)エージェントは、コンピュータビジョンモデルの開発を自動化するための有望なソリューションとして登場した。
LLM駆動のMLパイプライン設計のための新しい戦略であるIterative Refinementを導入する。
イテレーティブリファインメントは安定性、解釈可能性、全体的なモデルパフォーマンスを改善します。
- 参考スコア(独自算出の注目度): 17.301758094000125
- License:
- Abstract: Computer vision is a critical component in a wide range of real-world applications, including plant monitoring in agriculture and handwriting classification in digital systems. However, developing high-performance computer vision models traditionally demands both machine learning (ML) expertise and domain-specific knowledge, making the process costly, labor-intensive, and inaccessible to many. Large language model (LLM) agents have emerged as a promising solution to automate this workflow, but most existing methods share a common limitation: they attempt to optimize entire pipelines in a single step before evaluation, making it difficult to attribute improvements to specific changes. This lack of granularity leads to unstable optimization and slower convergence, limiting their effectiveness. To address this, we introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design inspired by how human ML experts iteratively refine models, focusing on one component at a time rather than making sweeping changes all at once. By systematically updating individual components based on real training feedback, Iterative Refinement improves stability, interpretability, and overall model performance. We implement this strategy in IMPROVE, an end-to-end LLM agent framework for automating and optimizing object classification pipelines. Through extensive evaluations across datasets of varying sizes and domains, including standard benchmarks and Kaggle competition datasets, we demonstrate that Iterative Refinement enables IMPROVE to consistently achieve better performance over existing zero-shot LLM-based approaches. These findings establish Iterative Refinement as an effective new strategy for LLM-driven ML automation and position IMPROVE as an accessible solution for building high-quality computer vision models without requiring ML expertise.
- Abstract(参考訳): コンピュータビジョンは、農業における植物モニタリングやデジタルシステムにおける手書き分類など、幅広い現実世界のアプリケーションにおいて重要な要素である。
しかし、高性能コンピュータビジョンモデルの開発には、伝統的に機械学習(ML)の専門知識とドメイン固有の知識の両方を必要とする。
大きな言語モデル(LLM)エージェントがこのワークフローを自動化するための有望なソリューションとして登場したが、既存のほとんどのメソッドは共通の制限を共有している。
この粒度の不足は不安定な最適化と収束を遅くし、その効果を制限している。
これを解決するために、私たちは、LLM駆動のMLパイプライン設計のための新しい戦略であるIterative Refinementを紹介します。
実際のトレーニングフィードバックに基づいて個々のコンポーネントを体系的に更新することで、イテレーティブリファインメントは安定性、解釈可能性、全体的なモデルパフォーマンスを改善します。
我々は、オブジェクト分類パイプラインの自動化と最適化のためのエンドツーエンドのLLMエージェントフレームワークであるIMPROVEにこの戦略を実装した。
標準ベンチマークやKaggleコンペティションデータセットなど,さまざまなサイズやドメインのデータセットに対する広範な評価を通じて,IMPROVEが既存のゼロショットLCMベースのアプローチよりも一貫してパフォーマンスを向上できることを実証した。
これらの結果から,LLM駆動型ML自動化のための効果的な新しい戦略として反復精錬が確立され,IMPROVEはMLの専門知識を必要とせず,高品質なコンピュータビジョンモデルを構築するためのアクセス可能なソリューションとして位置づけられた。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
本稿では,新しいモデルレベルの判断自由自己改善フレームワークを提案する。
本手法では,検証ループにおけるMLLMの必要性を解消しつつ,制御されたフィードバック機構を用いる。
計算要求が大幅に小さく、精度とリコールの精度が向上する。
論文 参考訳(メタデータ) (2024-11-26T00:44:37Z) - AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLMは任意の形状の大規模言語モデルの即時導出を可能にする新しいフレームワークである。
AmoebaLLMは、様々なプラットフォームやアプリケーションに適した迅速なデプロイメントを著しく促進する。
論文 参考訳(メタデータ) (2024-11-15T22:02:28Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - SELA: Tree-Search Enhanced LLM Agents for Automated Machine Learning [14.702694298483445]
Tree-Search Enhanced LLM Agents (SELA)は、Monte Carlo Tree Search (MCTS)を利用してAutoMLプロセスを最適化するエージェントベースのシステムである。
SELAはパイプライン構成をツリーとして表現し、エージェントが知的かつ反復的に戦略を洗練させることを可能にする。
20の機械学習データセットにわたる広範囲な評価において、従来のAutoML手法とエージェントベースのAutoML手法のパフォーマンスを比較した。
論文 参考訳(メタデータ) (2024-10-22T17:56:08Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
本稿では,Large Language Models (LLM) の微調整について検討する。
従来の自然言語処理(NLP)モデルから、AIにおける彼らの重要な役割まで、LLMの歴史的進化を概説している。
本報告では, 微調整LDMのための構造化7段パイプラインについて紹介する。
論文 参考訳(メタデータ) (2024-08-23T14:48:02Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.67321902882617]
最適化モデルのための半自動データ合成フレームワークOR-Instructを紹介する。
また,実用的なOR問題を解く上で,LLMを評価するための最初の産業ベンチマークであるIndustrialORを紹介した。
論文 参考訳(メタデータ) (2024-05-28T01:55:35Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。