論文の概要: LLM-Guided Evolution: An Autonomous Model Optimization for Object Detection
- arxiv url: http://arxiv.org/abs/2504.02280v1
- Date: Thu, 03 Apr 2025 05:06:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 21:06:18.876783
- Title: LLM-Guided Evolution: An Autonomous Model Optimization for Object Detection
- Title(参考訳): LLM-Guided Evolution: オブジェクト検出のための自律モデル最適化
- Authors: YiMing Yu, Jason Zutty,
- Abstract要約: 機械学習では、ニューラルネットワークサーチ(NAS)はモデル設計のドメイン知識と、有望なパフォーマンスを達成するために大量の試行錯誤を必要とする。
Large Language Model (LLM)-Guided Evolution (GE)フレームワークは、CIFARデータ上の画像分類アルゴリズムのモデルソースコードを直接修正するためにLLMを組み込むことによって、このアプローチを変革した。
LLM-GEは平均平均精度を92.5%から94.5%に向上させるなど,大幅な性能向上を図った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In machine learning, Neural Architecture Search (NAS) requires domain knowledge of model design and a large amount of trial-and-error to achieve promising performance. Meanwhile, evolutionary algorithms have traditionally relied on fixed rules and pre-defined building blocks. The Large Language Model (LLM)-Guided Evolution (GE) framework transformed this approach by incorporating LLMs to directly modify model source code for image classification algorithms on CIFAR data and intelligently guide mutations and crossovers. A key element of LLM-GE is the "Evolution of Thought" (EoT) technique, which establishes feedback loops, allowing LLMs to refine their decisions iteratively based on how previous operations performed. In this study, we perform NAS for object detection by improving LLM-GE to modify the architecture of You Only Look Once (YOLO) models to enhance performance on the KITTI dataset. Our approach intelligently adjusts the design and settings of YOLO to find the optimal algorithms against objective such as detection accuracy and speed. We show that LLM-GE produced variants with significant performance improvements, such as an increase in Mean Average Precision from 92.5% to 94.5%. This result highlights the flexibility and effectiveness of LLM-GE on real-world challenges, offering a novel paradigm for automated machine learning that combines LLM-driven reasoning with evolutionary strategies.
- Abstract(参考訳): 機械学習では、ニューラルネットワークサーチ(NAS)はモデル設計のドメイン知識と、有望なパフォーマンスを達成するために大量の試行錯誤を必要とする。
一方、進化的アルゴリズムは伝統的に一定の規則と事前定義されたビルディングブロックに依存してきた。
Large Language Model (LLM)-Guided Evolution (GE) フレームワークは、CIFARデータ上で画像分類アルゴリズムのモデルソースコードを直接修正し、突然変異や交叉をインテリジェントにガイドするためにLLMを組み込むことによって、このアプローチを変革した。
LLM-GEの重要な要素は、フィードバックループを確立する"Evolution of Thought"(EoT)技術である。
本研究では,LLM-GEの改良によるオブジェクト検出のためのNASを行い,YOLO(You Only Look Once)モデルのアーキテクチャを改良し,KITTIデータセットの性能を向上させる。
提案手法は, YOLOの設計と設定をインテリジェントに調整し, 検出精度や速度などの目的に対して最適なアルゴリズムを求める。
LLM-GEは平均平均精度を92.5%から94.5%に向上させるなど,大幅な性能向上を図った。
この結果は、LLM-GEの現実の課題に対する柔軟性と有効性を強調し、LLM駆動推論と進化戦略を組み合わせた機械学習のための新しいパラダイムを提供する。
関連論文リスト
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
本稿では,Large Language Models (LLM) をモデル選択の軽量な代替手段として活用することを提案する。
提案手法は, LLMの固有知識と推論能力を活用することで, 明示的な性能行列の必要性を解消する。
論文 参考訳(メタデータ) (2025-04-02T20:33:27Z) - Exploring Model Editing for LLM-based Aspect-Based Sentiment Classification [17.512415475301395]
本研究では,大規模言語モデル(LLM)をアスペクトベース感情分類に適応させる効率的な手法として,モデル編集について検討する。
この結果から,特定のアスペクト単語の感情極性を検出するには,異なる中間層表現のセットが不可欠であることが判明した。
我々は,LLMの重要な部分にのみ焦点をあてたモデル編集手法を開発し,より効率的なLLM適応法を実現する。
論文 参考訳(メタデータ) (2025-03-19T11:21:37Z) - LLM-FE: Automated Feature Engineering for Tabular Data with LLMs as Evolutionary Optimizers [10.282327560070202]
大規模言語モデル(LLM)は、機能エンジニアリングプロセスにドメイン知識を統合することを可能にする。
進化的探索とドメイン知識とLLMの推論能力を組み合わせた新しいフレームワーク LLM-FE を提案する。
以上の結果から,LLM-FEは最先端のベースラインを一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2025-03-18T17:11:24Z) - IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents [17.301758094000125]
大規模言語モデル(LLM)エージェントは、コンピュータビジョンモデルの開発を自動化するための有望なソリューションとして登場した。
LLM駆動のMLパイプライン設計のための新しい戦略であるIterative Refinementを導入する。
イテレーティブリファインメントは安定性、解釈可能性、全体的なモデルパフォーマンスを改善します。
論文 参考訳(メタデータ) (2025-02-25T01:52:37Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - Improving Autoregressive Visual Generation with Cluster-Oriented Token Prediction [52.09472099976885]
IARは、LLMベースのビジュアル生成モデルのトレーニング効率と生成品質を向上させる改良された自動回帰ビジュアル生成方法である。
提案手法は,モデルのトレーニング効率と性能を100Mから1.4Bに継続的に向上させ,同じFIDを達成しながらトレーニング時間を半減させる。
論文 参考訳(メタデータ) (2025-01-01T15:58:51Z) - Multi-Objective Large Language Model Unlearning [3.372396620898397]
グラディエント・アセント(GA)は、対象データ上のモデルの予測確率を減少させるプロアクティブな方法である。
本稿では,多目的大規模言語モデル学習(MOLLM)アルゴリズムを提案する。
実験の結果,MLLM が SOTA GA をベースとした LLM アンラーニング法よりも非ラーニング効果とモデルユーティリティ保存の点で優れていたことが確認された。
論文 参考訳(メタデータ) (2024-12-29T09:35:56Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - LLM Guided Evolution - The Automation of Models Advancing Models [0.0]
ガイドド・エボリューション(GE)は、従来の機械学習アプローチから切り離された斬新なフレームワークである。
思想の進化(EoT)は、従来の突然変異の結果からLLMを反映して学習させることでGEを強化する。
ExquisiteNetV2モデルの進化におけるGEの適用は,その有効性を示している。
論文 参考訳(メタデータ) (2024-03-18T03:44:55Z) - Large Language Models As Evolution Strategies [6.873777465945062]
本研究では,大規模言語モデル (LLM) が進化的最適化アルゴリズムを実装可能であるかどうかを考察する。
我々は,最小から最多の集団集団を選別する新規なプロンプト戦略を導入する。
我々の設定により、ユーザがLLMベースの進化戦略を得ることができ、それはEvoLLM'と呼ばれ、ベースラインアルゴリズムを頑健に上回る。
論文 参考訳(メタデータ) (2024-02-28T15:02:17Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
本稿では、微調整時のメモリコスト低減のためのソリューションとして、BPフリーゼロオーダー最適化(ZO)への移行を提案する。
従来のZO-SGD法とは異なり、我々の研究はより広い範囲のZO最適化手法に探索を広げる。
本研究は,タスクアライメントの重要性,前方勾配法の役割,アルゴリズムの複雑さと微調整性能のバランスについて,これまで見過ごされてきた最適化原理を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T14:08:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。