論文の概要: WhatELSE: Shaping Narrative Spaces at Configurable Level of Abstraction for AI-bridged Interactive Storytelling
- arxiv url: http://arxiv.org/abs/2502.18641v1
- Date: Tue, 25 Feb 2025 21:02:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 15:24:46.307161
- Title: WhatELSE: Shaping Narrative Spaces at Configurable Level of Abstraction for AI-bridged Interactive Storytelling
- Title(参考訳): WhatELSE:AIによる対話型ストーリーテリングのための抽象的な構成レベルでのナラティブ空間形成
- Authors: Zhuoran Lu, Qian Zhou, Yi Wang,
- Abstract要約: WhatELSEはAIでブリッジされたINオーサリングシステムで、例題から物語可能性空間を生成する。
我々は,WhatELSEによって著者が物語空間を知覚し,編集し,プレイ時に対話的な物語を生成することができることを示す。
- 参考スコア(独自算出の注目度): 11.210282687859534
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generative AI significantly enhances player agency in interactive narratives (IN) by enabling just-in-time content generation that adapts to player actions. While delegating generation to AI makes IN more interactive, it becomes challenging for authors to control the space of possible narratives - within which the final story experienced by the player emerges from their interaction with AI. In this paper, we present WhatELSE, an AI-bridged IN authoring system that creates narrative possibility spaces from example stories. WhatELSE provides three views (narrative pivot, outline, and variants) to help authors understand the narrative space and corresponding tools leveraging linguistic abstraction to control the boundaries of the narrative space. Taking innovative LLM-based narrative planning approaches, WhatELSE further unfolds the narrative space into executable game events. Through a user study (N=12) and technical evaluations, we found that WhatELSE enables authors to perceive and edit the narrative space and generates engaging interactive narratives at play-time.
- Abstract(参考訳): 生成AIは、プレイヤーアクションに適応するジャストインタイムコンテンツ生成を可能にすることで、インタラクティブな物語(IN)におけるプレイヤーエージェンシーを著しく強化する。
世代をAIに委譲することで、INはよりインタラクティブになるが、著者が物語の可能な空間を制御することは困難になる。
本稿では,AIを用いたINオーサリングシステムであるWhatELSEについて述べる。
WhatELSEは、著者が物語空間とそれに対応するツールを理解するのに役立つ3つのビュー(物語のピボット、アウトライン、変種)を提供する。
革新的なLLMベースの物語計画アプローチを採用し、WhatELSEはさらに物語空間を実行可能なゲームイベントへと広げている。
ユーザスタディ (N=12) と技術評価により,WhatELSEは著者が物語空間を知覚し,編集し,プレイ時に対話的な物語を生成することができることがわかった。
関連論文リスト
- Collaborative Storytelling and LLM: A Linguistic Analysis of Automatically-Generated Role-Playing Game Sessions [55.2480439325792]
RPG(ロールプレイングゲーム)とは、プレイヤーが互いに対話して物語を作るゲームである。
この共有物語の新たな形態は、主に口頭で注目されている。
本稿では,大言語モデル(LLM)の言語がRPGセッションの生成を依頼した場合に,どの程度に口頭や書面の機能を示すかを明らかにすることを目的とする。
論文 参考訳(メタデータ) (2025-03-26T15:10:47Z) - Narrative Context Protocol: an Author-centric Storytelling Framework for Generative AI [0.0]
本研究では,ナラティブ・コンテキスト・プロトコル (NCP) を提案する。
客観的な物語モデルに従って著者の意図を符号化することにより、NCPは物語の移植性と、生成システムに対する意図に基づく制約を可能にする。
論文 参考訳(メタデータ) (2025-03-05T18:29:15Z) - Towards Enhanced Immersion and Agency for LLM-based Interactive Drama [55.770617779283064]
本論文は,対話型ドラマを2つの側面から理解することから始まる:没入感,プレイヤーの物語への参加感,エージェンシーである。
これら2つの側面を強化するために,我々はまず,LLMが劇的なストーリーを製作し,構造と物語の質を大幅に向上させる新しい手法であるPlaywriting-Guided Generationを提案する。
論文 参考訳(メタデータ) (2025-02-25T06:06:16Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
本稿では,物語の執筆を特殊エージェントが取り組んだサブタスクに分解する,物語理論に触発された世代フレームワークを提案する。
エージェントの部屋は,専門的評価者が好むストーリーをベースラインシステムより生成することを示す。
論文 参考訳(メタデータ) (2024-10-03T15:44:42Z) - Story3D-Agent: Exploring 3D Storytelling Visualization with Large Language Models [57.30913211264333]
提案するStory3D-Agentは、提供された物語を3Dレンダリングの可視化に変換する先駆的なアプローチである。
プロシージャモデリングを統合することで,複数文字の動作や動きを正確に制御できるだけでなく,多様な装飾的要素も利用できる。
我々は,ストーリー3D-Agentを徹底的に評価し,その有効性を検証し,3Dストーリー表現を前進させるための基本的な枠組みを提供した。
論文 参考訳(メタデータ) (2024-08-21T17:43:15Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
本稿ではストーリーテリングにおけるLLMの能力について考察し,物語の展開とプロットの進行に着目した。
本稿では,3つの談話レベルの側面から物語を分析するための新しい計算フレームワークを提案する。
談話機能の明示的な統合は、ニューラルストーリーテリングの40%以上の改善によって示されるように、ストーリーテリングを促進することができることを示す。
論文 参考訳(メタデータ) (2024-07-18T08:02:49Z) - Social Life Simulation for Non-Cognitive Skills Learning [7.730401608473805]
大型言語モデル(LLM)によって実現された対話型プラットフォームであるSimulife++を紹介する。
このシステムでは、ユーザーは主人公として行動し、1つまたは複数のAIベースのキャラクターをさまざまな社会的シナリオで作り出すことができる。
特に,人間-AIインタラクションを,傍観者として行動するSage Agentを含む人間-AI-AIコラボレーションに拡張した。
論文 参考訳(メタデータ) (2024-05-01T01:45:50Z) - SARD: A Human-AI Collaborative Story Generation [0.0]
本研究では,大規模言語モデルを用いたマルチチャプタストーリ生成のためのドラッグアンドドロップ型ビジュアルインタフェースであるSARDを提案する。
SARDのユーザビリティとその創造性に対する評価は、物語のノードベースの可視化は、著者がメンタルモデルを構築するのに役立つかもしれないが、著者にとって不必要な精神的オーバーヘッドを生じさせることを示している。
また、AIはストーリーの複雑さに関係なく、語彙的に多様性の低いストーリーを生成することもわかりました。
論文 参考訳(メタデータ) (2024-03-03T17:48:42Z) - NarrativePlay: Interactive Narrative Understanding [27.440721435864194]
本研究では,ユーザが架空のキャラクターをロールプレイし,没入感のある環境で他のキャラクターと対話できる新しいシステムであるNarrativePlayを紹介する。
我々はLarge Language Models(LLMs)を利用して、物語から抽出された性格特性によって導かれる人間的な応答を生成する。
ナラティブプレイは2種類の物語、探偵と冒険の物語で評価されており、ユーザーは世界を探索したり、会話を通じて物語のキャラクターと親しみやすくしたりすることができる。
論文 参考訳(メタデータ) (2023-10-02T13:24:00Z) - Situated Language Learning via Interactive Narratives [16.67845396797253]
本稿では,文脈的関連のある自然言語を理解し,生成する能力を持つ学習エージェントの活用方法について考察する。
このようなエージェントを作成するための2つの重要なコンポーネントは、相互作用と環境接地です。
テキストゲームのパズルのような構造と自然言語状態とアクション空間が組み合わさったユニークな課題について論じる。
論文 参考訳(メタデータ) (2021-03-18T01:55:16Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
本研究では,対話型物語生成の課題に焦点をあてる。
本稿では、この追加情報を効果的に活用するための2つのコンテンツ誘導手法を提案する。
自動評価と人的評価の両方による実験結果から,これらの手法がよりトポロジ的な一貫性とパーソナライズされたストーリーを生み出すことが示された。
論文 参考訳(メタデータ) (2020-10-20T00:36:15Z) - Tension Space Analysis for Emergent Narrative [0.1784936803975635]
本稿では,可能世界のナラトロジー理論を用いた創発的物語への新たなアプローチを提案する。
本研究では,このようなシステムにおける作業設計を,表現的範囲分析に触発された形式的解析手法を用いて理解する方法を実証する。
最後に、スケッチベースのインタフェースを用いて、創発的な物語システムのために、コンテンツを作成できる新しい方法を提案する。
論文 参考訳(メタデータ) (2020-04-22T19:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。