論文の概要: SARD: A Human-AI Collaborative Story Generation
- arxiv url: http://arxiv.org/abs/2403.01575v1
- Date: Sun, 3 Mar 2024 17:48:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 20:46:42.681348
- Title: SARD: A Human-AI Collaborative Story Generation
- Title(参考訳): SARD: 人間とAIのコラボレーションによるストーリージェネレーション
- Authors: Ahmed Y. Radwan, Khaled M. Alasmari, Omar A. Abdulbagi, Emad A.
Alghamdi
- Abstract要約: 本研究では,大規模言語モデルを用いたマルチチャプタストーリ生成のためのドラッグアンドドロップ型ビジュアルインタフェースであるSARDを提案する。
SARDのユーザビリティとその創造性に対する評価は、物語のノードベースの可視化は、著者がメンタルモデルを構築するのに役立つかもしれないが、著者にとって不必要な精神的オーバーヘッドを生じさせることを示している。
また、AIはストーリーの複雑さに関係なく、語彙的に多様性の低いストーリーを生成することもわかりました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative artificial intelligence (GenAI) has ushered in a new era for
storytellers, providing a powerful tool to ignite creativity and explore
uncharted narrative territories. As technology continues to advance, the
synergy between human creativity and AI-generated content holds the potential
to redefine the landscape of storytelling. In this work, we propose SARD, a
drag-and-drop visual interface for generating a multi-chapter story using large
language models. Our evaluation of the usability of SARD and its creativity
support shows that while node-based visualization of the narrative may help
writers build a mental model, it exerts unnecessary mental overhead to the
writer and becomes a source of distraction as the story becomes more
elaborated. We also found that AI generates stories that are less lexically
diverse, irrespective of the complexity of the story. We identified some
patterns and limitations of our tool that can guide the development of future
human-AI co-writing tools.
- Abstract(参考訳): 創造的人工知能(GenAI)は、ストーリーテラーにとって新たな時代を迎え、創造性を啓発し、未知の物語領域を探索する強力なツールを提供する。
テクノロジーが進歩を続けるにつれて、人間の創造性とAI生成コンテンツとのシナジーは、ストーリーテリングの風景を再定義する可能性を持っている。
本研究では,大規模言語モデルを用いたマルチキャプタストーリー生成のためのドラッグアンドドロップビジュアルインタフェースであるsardを提案する。
SARDのユーザビリティとその創造性に対する評価は、物語のノードベースの可視化は、著者がメンタルモデルを構築するのに役立つかもしれないが、著者に不要な精神的オーバーヘッドを課し、物語がより精巧になるにつれて、気晴らしの源となることを示している。
また、AIはストーリーの複雑さに関係なく、語彙的に多様性の低いストーリーを生成することもわかりました。
我々は、将来の人間とAIの共筆ツールの開発をガイドできるツールのパターンと制限を特定した。
関連論文リスト
- StoryAgent: Customized Storytelling Video Generation via Multi-Agent Collaboration [88.94832383850533]
CSVG(Customized Storytelling Video Generation)のためのマルチエージェントフレームワークを提案する。
StoryAgentはCSVGを特殊エージェントに割り当てられた個別のサブタスクに分解し、プロの制作プロセスを反映する。
具体的には、撮影時間内整合性を高めるために、カスタマイズされたイメージ・ツー・ビデオ(I2V)手法であるLoRA-BEを導入する。
コントリビューションには、ビデオ生成タスクのための汎用フレームワークであるStoryAgentの導入や、プロタゴニストの一貫性を維持するための新しい技術が含まれている。
論文 参考訳(メタデータ) (2024-11-07T18:00:33Z) - Crafting Narrative Closures: Zero-Shot Learning with SSM Mamba for Short Story Ending Generation [0.0]
作家たちは創造的なブロックの瞬間に遭遇し、物語の進行路が曖昧になる。
この論文は、革新的なソリューションとして、与えられたプロンプトに基づいてストーリーを完成させるツールを提供することによって、そのような状況に対処するように設計されている。
短いストーリープロンプトを入力することで、ユーザーは1文以上で説明されたストーリーの結論を受け取ることができ、それによってAI駆動の創造性によってストーリーテリングプロセスが強化される。
論文 参考訳(メタデータ) (2024-10-04T18:56:32Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
本稿では,物語の執筆を特殊エージェントが取り組んだサブタスクに分解する,物語理論に触発された世代フレームワークを提案する。
エージェントの部屋は,専門的評価者が好むストーリーをベースラインシステムより生成することを示す。
論文 参考訳(メタデータ) (2024-10-03T15:44:42Z) - Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion
Models [70.86603627188519]
我々は,オープンエンドなビジュアルストーリーテリングとして表現された,与えられたストーリーラインに基づいてコヒーレントな画像列を生成するという,斬新で挑戦的な課題に焦点をあてる。
本稿では,新しい視覚言語コンテキストモジュールを用いた学習に基づく自動回帰画像生成モデル(StoryGen)を提案する。
StoryGenは最適化なしに文字を一般化することができ、一貫性のあるコンテンツと一貫した文字で画像列を生成する。
論文 参考訳(メタデータ) (2023-06-01T17:58:50Z) - Creative Writing with an AI-Powered Writing Assistant: Perspectives from
Professional Writers [9.120878749348986]
ニューラルネットワークモデルを用いた自然言語生成(NLG)は、AIによるクリエイティブな記述ツールを構築するという目標に、これまで以上に近づいています。
ニューラルネットワークモデルを用いた自然言語生成の最近の進歩は、AIを使ったクリエイティブな記述ツールを構築するという目標に、これまで以上に近づいている。
論文 参考訳(メタデータ) (2022-11-09T17:00:56Z) - Visualize Before You Write: Imagination-Guided Open-Ended Text
Generation [68.96699389728964]
我々は、機械生成画像を用いて、オープンエンドテキスト生成における言語モデルをガイドするiNLGを提案する。
オープンエンドテキスト生成タスクにおけるiNLGの有効性について実験と解析を行った。
論文 参考訳(メタデータ) (2022-10-07T18:01:09Z) - Computational Storytelling and Emotions: A Survey [56.95572957863576]
本研究は,物語と感情の関係に関する研究を要約し,その発展に寄与することを目的としている。
創造性の研究は人間をコンピューターに置き換えることではなく、創造性を高めるために人間とコンピューターのコラボレーション方法を見つけることであると私たちは信じています。
論文 参考訳(メタデータ) (2022-05-23T00:21:59Z) - Telling Creative Stories Using Generative Visual Aids [52.623545341588304]
私たちはライターに、開始プロンプトからクリエイティブなストーリーを書くように頼み、同じプロンプトから生成するAIモデルによって生成されたビジュアルを提供した。
コントロールグループと比較すると、ビジュアルをストーリー・ライティング・アシストとして使用した作家は、より創造的で、オリジナルで、完全で、視覚的にできるストーリーを著した。
発見は、AIによる横断的なモダリティ入力は、人間とAIの共創において創造性の異なる側面に利益をもたらすが、収束する思考を妨げることを示している。
論文 参考訳(メタデータ) (2021-10-27T23:13:47Z) - A guided journey through non-interactive automatic story generation [0.0]
この記事では,創造的システムに対する要件,創造性の3種類のモデル(計算的,社会文化的,個人的),人間の創造的記述のモデルについて述べる。
この記事は、伝達すべき主要なアイデアの自律的生成と採用、創造性を保証する基準の自律的設計が、おそらく将来の研究において最も重要なトピックの2つである、と結論付けている。
論文 参考訳(メタデータ) (2021-10-08T10:01:36Z) - Collaborative Storytelling with Large-scale Neural Language Models [6.0794985566317425]
我々は、人工知能エージェントと人が協力して、交代で追加することでユニークなストーリーを作るという、協調的なストーリーテリングのタスクを紹介します。
本稿では,人間ストーリーテラーと協調して物語を創り出す共同ストーリーテリングシステムについて述べる。
論文 参考訳(メタデータ) (2020-11-20T04:36:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。