論文の概要: Enhanced Transformer-Based Tracking for Skiing Events: Overcoming Multi-Camera Challenges, Scale Variations and Rapid Motion -- SkiTB Visual Tracking Challenge 2025
- arxiv url: http://arxiv.org/abs/2502.18867v1
- Date: Wed, 26 Feb 2025 06:26:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:57:35.543643
- Title: Enhanced Transformer-Based Tracking for Skiing Events: Overcoming Multi-Camera Challenges, Scale Variations and Rapid Motion -- SkiTB Visual Tracking Challenge 2025
- Title(参考訳): スキーイベントのためのトランスフォーマーベースの追跡強化:マルチカメラチャレンジ、スケールバリエーション、ラピッドモーションを克服する -- SkiTB Visual Tracking Challenge 2025
- Authors: Akhil Penta, Vaibhav Adwani, Ankush Chopra,
- Abstract要約: 我々は,変圧器ベースモデルSTARK (Spatio-Temporal Transformer Network for Visual Tracking) を用いてスキーヤーを追跡する。
我々はSTARKを適用して、カメラの動き、カメラの変化、閉塞など、ドメイン固有の課題に対処した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate skier tracking is essential for performance analysis, injury prevention, and optimizing training strategies in alpine sports. Traditional tracking methods often struggle with occlusions, dynamic movements, and varying environmental conditions, limiting their effectiveness. In this work, we used STARK (Spatio-Temporal Transformer Network for Visual Tracking), a transformer-based model, to track skiers. We adapted STARK to address domain-specific challenges such as camera movements, camera changes, occlusions, etc. by optimizing the model's architecture and hyperparameters to better suit the dataset.
- Abstract(参考訳): 正確なスキーヤー追跡は、アルペンスポーツにおけるパフォーマンス分析、怪我予防、およびトレーニング戦略の最適化に不可欠である。
従来の追跡手法は、閉塞、動的運動、環境条件の変化に苦しむことが多く、その効果を制限している。
本研究では,変圧器モデルであるSTARK (Spatio-Temporal Transformer Network for Visual Tracking) を用いてスキーヤーの追跡を行った。
モデルのアーキテクチャとハイパーパラメータを最適化することで、カメラの動き、カメラの変更、オクルージョンなどのドメイン固有の課題に対処するためにSTARKを適用した。
関連論文リスト
- Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
本稿では,動的障害物に関する情報を最小限に抑えた最適オンライン動作計画手法を提案する。
提案手法は,モデルシミュレーションによるオンライン最適計画のためのモンテカルロ木探索 (MCTS) と障害物回避のためのVelocity Obstacles (VO) を組み合わせた。
我々は,非線形モデル予測制御(NMPC)を含む最先端のプランナーに対して,衝突速度,計算,タスク性能の向上の観点から,我々の方法論の優位性を示す。
論文 参考訳(メタデータ) (2025-01-16T16:45:08Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Motion Segmentation for Neuromorphic Aerial Surveillance [42.04157319642197]
イベントカメラは優れた時間分解能、優れたダイナミックレンジ、最小限の電力要件を提供する。
固定間隔で冗長な情報をキャプチャする従来のフレームベースのセンサーとは異なり、イベントカメラは画素レベルの明るさ変化を非同期に記録する。
本稿では,イベントデータと光フロー情報の両方に自己監督型視覚変換器を利用する動き分割手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T04:36:13Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - Distractor-aware Event-based Tracking [45.07711356111249]
本稿では,シームズネットワークアーキテクチャ(DANet)にトランスフォーマーモジュールを導入するイベントベースのトラッカーを提案する。
本モデルは主にモーション認識ネットワークとターゲット認識ネットワークで構成され,イベントデータから動作キューとオブジェクトの輪郭の両方を同時に活用する。
私たちのDANetは、後処理なしでエンドツーエンドでトレーニングでき、単一のV100上で80FPS以上で実行できます。
論文 参考訳(メタデータ) (2023-10-22T05:50:20Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
高ダイナミックレンジイメージングは、複数の低ダイナミックレンジ入力から情報を取得し、リアルな出力を生成することを目的としている。
既存の手法では、前景やカメラの動きによって引き起こされる入力フレーム間の空間的ずれに焦点を当てることが多い。
本研究では,SCTNet(Semantics Consistent Transformer)を用いたアライメントフリーネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:03:23Z) - SGDViT: Saliency-Guided Dynamic Vision Transformer for UAV Tracking [12.447854608181833]
本研究は、UAV追跡のための新しいサリエンシ誘導動的視覚変換器(SGDViT)を提案する。
提案手法は,クロスコリレーション操作を洗練させるために,タスク固有の新たなオブジェクト・サリエンシ・マイニング・ネットワークを設計する。
軽量な塩分フィルタリング変換器は、さらに塩分情報を洗練し、外観情報に焦点を当てる。
論文 参考訳(メタデータ) (2023-03-08T05:01:00Z) - Learning to Jump from Pixels [23.17535989519855]
我々は、高度にアジャイルな視覚的誘導行動の合成法であるDepth-based Impulse Control (DIC)を提案する。
DICは、モデルフリー学習の柔軟性を提供するが、地面反応力の明示的なモデルベース最適化により、振る舞いを規則化する。
提案手法をシミュレーションと実世界の両方で評価する。
論文 参考訳(メタデータ) (2021-10-28T17:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。